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Abstract

The sleep apnea syndrom is defined as repeated pauses in breathing during
sleep period which leads to interrupts in sleep and decreases in oxyhemoglobin
saturation. It is well understood that quantity and quality of sleep could signif-
icantly affect work productivity. In this study multimodal analysis of breathing
is done with two different sensors. The first sensor measures nasal air flow and
the second sensor measure abdomen effort during breathing. As it is needed
to manually go through records of whole night sleep to confirm some of an au-
tomatic classification of events that can disturb sleep, it is very important to
have accurate classifier. This papers aim is to present results of pilot study of
competitive neural network (CNN) classifier based on Wavelet transform, with
which is possible to evaluate sleep apnea from multimodal breathing data with
accuracy of 94.2 % with comparison to classification of Sleep apnea by doctor.
Evaluation of the whole output of CNN is complicated as the neural network
was trained without target data. It can detect all apnea events from length of 5
seconds, including those that are missing in the classification by a doctor.

1 Introduction

The Sleep Apnea Syndrom (SAS) is characterized by repeated pauses in breathing during sleep,
which lead to the fragmentation of sleep and decreases in oxyhemoglobin saturation [6, 27].
The patients complains some of the following symptoms: unintentional sleep episodes during
wakefulness, daytime sleepiness, unrefreshing sleep, fatigue, insomnia, gasping and choking and
loud snoring [10, 3, 26, 16].

It is well understood that quantity and quality of sleep could significantly affect work
productivity [18]. In severe sleep apnea extreme sleepiness can occur during activities that
require more active attention, like during eating, walking or driving and it can be life-threatening
and has been associated with cardiovascular morbidity and mortality.

The Polysomnography (PSG) is the current golden standard for the evaluation of sleep-
disordered breathing, which is usually performed during night [20, 21, 1, 16]. It provides detailed
data on respiratory effort, airflow, oxygenation, sleep state, and other variables, but it is costly
and requires subjects to sleep overnight in a laboratory. It records many physiological param-
eters as electroencephalogram (EEG), electrocardiogram (ECG), electrooculography (EOG),
electromyography (EMG), air flow and oxygen saturation simultaneously during sleep [4].

In this study multimodal analysis of breathing is done with two different sensors from PSG.
The first sensor measures nasal air flow using a thermistor [9, 11]. The thermistor is special type
of resistor whose resistance is dependent on temperature. The second sensor measure abdomen
effort during breathing, which is realized as elastic belt with piezo-electric sensor, that directly
generates a voltage when compressed or stretched, fastened around body [8].

As it is necessary to go through records of whole night sleep to confirm automatic classi-
fication of events that can disturb sleep, it is very important to have accurate classifier. This
paper aim is to present such classifier based on wavelet transform and unsupervised training of



simple competitive neural network that would accurately classify all drops in breathing from
nasal airflow signal and abdomen effort signal.

2 Mathematical Background

2.1 Discrete Wavelet Transform

A wavelet transform is an alternative for a short-time Fourier transform. Both transforms
return information about a frequency part of a signal, however the short-time Fourier transform
can provide an exact frequency analysis but not that detailed time analysis. Benefit of the
wavelet transform is that it can give us good time distinction with lower frequency detail, or
with lower time distinction higher frequency detail. It provides as result a set of frequency-time
representation of signal in different scales of resolution.

Discreet wavelet transform uses a set of two functions. The wavelet function defines a
high-pass filter, and the scale function works as a low-pass filter. The result of input signal
convolution with these two function form approximate and detail coefficients (Figure 2).
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Figure 1: Discreet wavelet transform for first level decomposition of a signal x to approximate
and detail coefficients.

A Haar wavelet transform is one of the basic types of discrete wavelet transforms. The
approximation and the detailed coefficients are enumerated from two succeeding signal values
in each step of the transform [25, 12, 25, 14]. The Haar matrix is defined as:

T =
1√
2

[
1 1
1 −1

]
(1)

The forward transform of a signal {x(n)}N−1
n=0 for its subsequent values {x(n), x(n + 1)}

for n = 0, 2, . . . , N − 2 is then:
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]
The resulting sequence {y0(0), y0(2), . . . , y0(N − 2)} is the lowpass part of input signal

decomposition with its length halved. The complementary highpass part of decomposition is
composed in the same way as {y1(1), y1(3), . . . , y1(N − 1)}.

The backward transform from two input signals of lowpass part and highpass part of
decomposition is:
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x =
1√
2

[
y0(nc)− y1(nc + 1)
y0(nc) + y1(nc + 1)

]
where {x(n), x(n + 1)} n = 0, 2, . . . , N − 2} is an output for two input signals y0(nc) y1(nc)
where nc = n

2 , n = 0, 2, . . . , N − 2.

2.2 Principal Component Analysis

Principal Component Analysis (PCA) is a statistical procedure that uses an orthogonal trans-
form to convert a set of observations of possibly correlated signals into a set of values of un-
correlated signals called principal components. The number of principal components is always
less than or equal to number of original signals. The transform is defined in such a way that
the largest possible variance is in the first principal component, and each succeeding component
has the highest variance possible under the constraint that it is orthogonal to the preceding
components. The resulting vectors form an uncorrelated orthogonal basis set [22]. PCA has
several advantages such as lack of redundancy, reduced complexity or reduction of noise [13].

PCA is mostly used as a tool in exploratory data analysis and for making predictive
models. PCA can be done by eigenvalue decomposition of a data covariance (or correlation)
matrix or singular value decomposition of a data matrix, usually after whitening.

3 Analysis of Respiratory Signal

The average breathing rate of an adult at rest is 16–20 breaths per minute, which means that
one period of breathing is 3–3.75 seconds. For a person older than 65 years is breathing rate at
rest 12–28 breaths per minute with one period of breathing 5–2.15 seconds. All possibilities have
to be taken into account, so the shortest window for analysis of breathing signal is 5 seconds
[5, 24].

Sleep apnea is characterized as pause of breathing during sleep and each pause can last
from few seconds up to minutes resulting in lack of oxygen in body. There exists three types of
sleep apnea, Obstructive sleep apnea accounts for 84%, Central sleep apnea for 0.4%, and 15%
of cases are mixed [19].

The sleep apnea is divided into three categories [16]:

• Obstructive sleep apnea that is the most common category of sleep-disordered breath-
ing. The muscle tone of the body ordinarily relaxes during sleep, and at the level of the
throat the human airway is composed of collapsible walls of soft tissue which can obstruct
breathing.

• Central sleep apnea that happens when the brain has imbalance in respiratory control.
The neurological feedback mechanism does not react fast enough to higher levels of carbon
dioxide in blood and body does not maintain even respiratory rate. The sleeper then cycle
between apnea and hyperpnea. There is no effort to breath during apnea, and breathing
may be faster after the episode for period of time.

• Mixed sleep apnea that is characterized as a combination of obstructive and central
sleep apnea, and its occurrence ranges from 0.56% to 18%.

This paper focuses on processing and analysis of two signals connected to breathing:
breathing effort and flow signal. The first signal represents abdomen effort during breathing
and the second one represents a measurement of air flow from nose. These two measurements



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency [Hz]

0

0.5

1

1.5

2

×105 Analysis of Breathing During Sleep

Figure 2: Frequency analysis of the full night record, showing presence of apnea (peak around
0.05 Hz), normal breathing (around 0.2 Hz) and hyperpnea (around 0.4 Hz). Hyperpnea is
caused by Central Apnea.

are very close but the first signal stands for the effort of breathing and the second one points to
the situation with the actual air intake (Figure 4) important for detection of sleep apnea.

There is a high correlation between the breathing effort signal and the flow signal, which
means that there is a lot of useful information in these data with respect to that there should
be 100% correlation for healthy patients.

The idea behind detecting sleep apnea is reduction of energy during occurrence in fre-
quency corresponding to breathing frequency at rest. To get to useful data for this process
it is needed to decompose signal using discreet wavelet transform up to level 6, which mean
we will get to frequency accuracy of 0.156 Hz per part. To simplify the process even more, we
decorrelate signal from nasal airflow and abdomen effort using the principal component analysis.

Severity of sleep apnea is divided by number of occurrences per hour. The mild severity is
from 5 to 15 airflow drops per hour of sleep, the moderate severity is from 15 to 30 occurrences
per hour and the severe severity is from 30 or more airflow drops per hour.

3.1 Signal Processing Using Energy of Frequency Parts

Decomposition of signal using Haar wavelet transform up to 6th level will result in frequency
precision of approximately 10 × 2−6 = 0.15625 Hz with the sampling frequency of 10 Hz.
The most interesting part of signal with respect to breathing is between 0–0.7 Hz (0–42 breaths
per minute). This partition will lead in 5 signals representing different frequency parts. To
get uniform results from different subjects, it is possible to transfer this signal using Parseval’s
theorem to ratio of signal energy in each decomposed part to energy of original signal.

The average respiratory rate at rest [7, 17, 15] is:
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Figure 3: Breathing signals during central apnoa. Patient completely stops to breathe.

• within 6 weeks: 0.5–1 Hz (0 to 60 breaths per min.)

• 6 months: 0.41–0.66 Hz (25-40 breaths per min.)

• 3 years: 0.33–0.5 Hz (20-30 breaths per min.)

• 6 years: 0.3–0.41 Hz (18-25 breaths per min.)

• 10 years: 0.2–0.25 Hz (12-15 breaths per min.)

• Adult: 0.26–0.33 Hz (16-20 breaths per min.)[2]

• ≥ 65 years: 0.2–0.46 Hz (12-28 breaths per min.)[23]

Figure 5 presents the breathing signal with the central apnoa event and its decomposition
of using Haar wavelet transform. We can see a significant decrease of signal energy during this
event. Figure 6 presents a normal breathing during sleep period for comparison.

The principal component analysis show that the majority of information is in the first
channel of DWT decomposition (80 %), and nearly all of the remaining information are in the
second (12 %) and the third (7 %) channel which means that 99 % of relevant information is in
the range of 0–0.4688 Hz.

As non-automatic analysis of whole night recordings of multimodal data is very time
consuming, results of classification does not always indicate all events. Such can happen when
there is more apnea events in sequence. It would not be wise to try to apply classifier that would
learn with teacher, so unsupervised learning on competitive neural network with 2 classes was
applied.



10 20 30 40 50 60 70 80

Time [s]

-1

-0.5

0

0.5

1
Abdomen effort

10 20 30 40 50 60 70 80

Time [s]

-1

-0.5

0

0.5

1
Nasal Air Flow

Figure 4: Breathing signals during obstructive apnoa. Patient tries to breathe, but he is not
able to inhale.

4 Results

As the classification of breathing signal was done by unsupervised competitive neural network
(CNN), it is necessary to evaluate its results in two ways. The first approach is to evaluate
outputs as comparison to manual classification by doctor and the second approach is to evaluate
results with respect to all events of apnea in a selected signal. Output of a competitive neural
network is in Figure 7, with selected detailed part in Figure 8. The CNN was trained on 13
apnea events from 10 patients.

Unfortunately it seems that not all apnea events are included in original classification of
polysomnographic data by doctor. That is probably because some of the events have to be
detected manually in the whole night records and it is more useful to know about areas when
the apnea happened than to manually detect every single one. Even so, it is possible to evaluate
result of our competitive neural network by comparison to original classification of sleep apnea.
Our approach has accuracy of 94.2 % versus classification of original data with respect to every
data point in discrete signal the sampling frequency of with 10 Hz.

The evaluation of the whole output of competitive neural network is more complicated,
as the CNN was trained without target data. But with respect to events in signal where the
breathing cycle stops, it detects these events from the length of 5 seconds. Best example is in
Figure 8 where can be clearly seen (in the third part of Figure 8) that the CNN can detect apnea
events that are identical to events classified by doctor (the second part of Figure 8), but that
are missing in the original classification by doctor.
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Figure 5: An event of central apnea represented as decorrelated signal, with wavelet decompo-
sition using Haar wavelet up to the 6th level. Each signal is representation of frequency part of
breathing signal as energy with respect to energy of the whole analyzed window. The drop of
energy in all channels during central apnea event is visible in the middle of the signal.

5 Conclusion

The tested multimodal signal processing approach shows a promise of very precise apnea de-
tection. All original classification of polysomnographic data are manual, so the error of 6.8 %
corresponds to error of 0.1 s. That means error around one data sample, which can be unin-
tentionally done during manual selection by doctor. The whole process presented in this paper
forms the first step in a more complex approach of sleep apnea detection and classification.

The future aim of this research will be testing current approach to a larger data set of 57
whole night records, from which 25 records are from patient with diagnosed sleep apnea and 32
records are from healthy patients. The additional distinction between all types of apnea will be
added, and possibility to detect hypopnea will be tested.
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Figure 6: Part with normal breathing represented as decorrelated signal, with wavelet decom-
position using Haar wavelet up to the 6th level. Each signal is representation of frequency part
of breathing signal as energy with respect to energy of the whole analyzed window.
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Figure 7: Decorrelated breathing signal with classification of sleep apnea by doctor and classi-
fication by competitive neural network.
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Figure 8: Selection of decorrelated breathing signal from Figure 7 with classification by doctor
and classification by competitive neural network.
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