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A. Procházkaa,b

a Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University, Prague, CZ
b University of Chemistry and Technology in Prague, Dept of Computing and Control Engineering, CZ

c Politecnico di Milano, Department of Mechanical Engineering, Italy
d Charles University, Department of Neurology, University Hospital in Hradec Kralove, CZ

Abstract

Respiration monitoring in Sleep laboratory using contact method is part of stan-
dard Polysomnography (PSG). During examination many biosensors are used
and cables from different sensors and their wired connections to computer can
affect patients quality of sleep and results of sleep analysis. The method pre-
sented in this paper can form the solution of this problem alowing the use of
contactless methods instead of respiratory belts. The aim of this contribution is
in presentation of contactless measuring of breathing using a relatively inexpen-
sive depth sensor from MS Kinect device.

1 Introduction

Range Imaging is based upon specific computational technologies that forms matrices (images)
with their elements (pixels) carrying information about the distance from the sensor to the
corresponding image component (also known as the depth map). The beginning of these methods
can be dated back to beginning of 20th century when radar was discovered [6]. The very first
range imaging sensor method true to its name and way of use was used by the Mars rover in
1977 [9]. Nowadays is mostly used method called time of flight, which measures how much time
it takes infrared light to travel from sensor to object and back. The technology using the time
of flight is also used in the MS Kinect v2 depth sensor, or in the LIDAR (LIght Detection And
Ranging) systems.

The breathing rate during wakefulness and sleep is different, during all stages of sleep
is significantly more rapid and shallow comparing to that during the awake stage. The most
significant reduction occurs during the REM sleep [4]. There exist no significant differences
between the sexes either in ventilation or in end-tidal concentrations during any stage of sleep
when are values corrected for body surface area. Also there are no significant differences in the
levels of ventilation in non-REM sleep, but there can be significant fall of ventilation in the REM
sleep. This reduction in ventilation exists because of a breathing pattern which is considerably
shallower in all stages of sleep than during wakefulness [4]. Breathing rate is one of the most
important vital signs [5]. And the respiratory rate and the respiratory dynamics provide useful
information for diagnostics or therapeutic use [8].

There are many methods for measuring breathing with contactless methods. One of good
examples is method which uses radio frequency and behaves essentially like a radar system [7, 17,
8]. A very common version of this method uses Doppler radar. It is based on the frequency shift
of a signal caused by the relative velocities of a transmitter and receiver. When is transmitted
signal reflected from the chest of patient, the signal will change in frequency according to the
movement of the chest. Another very interesting method uses Eddy current to uses change in
torso conductance, caused by varying quantities of air, blood and fluids during respiration, to
measure volume changes of air in the lungs [14].



2 Methods

The MS Kinect v2 depth sensor was used to record Depth maps that follows chest movement, to
analyze breathing and to detect its disorders. The official range of this sensor is 4.5m [1], but it
is able to measure depth up to 8m with the sampling rate up to 30 FPS (frames per second) [1].
The resulting matrix has 512x424 elements [1, 16], and precision of depth measurement was
increased in some depth range when compared with previous version of MS Kinect v1. The
depth sensor of the MS Kinect v2 is not affected by outside light and errors from it are not
present in depth maps. However single rough errors randomly distributed around edges or in
areas out of sensor range still exist and can substantially affect the perception captured scene.
The method for reducing of these errors is similar to methods used for filtering the salt-and-
pepper noise in standard images. In this case the 2D median filter was used for the depth
map.

2.1 Data Acquisition

We considered two methods for processing of depth maps (as on Figure 1), both dealing with
the mean of depth over the selected area of M rows and N columns. The first method computes
the mean value of selected area in the depth map

y(t) =
1

MN

∑
i

∑
j

DMt(i, j) (1)

where the DMt is the depth map, acquired in time t, and i, j are indexes of area of interest.
The second method evaluates the mean of differences of two consecutive depth maps

y(t) =
1

MN

∑
i

∑
j

(DMt(i, j)−DMt−1(i, j)) (2)

where DMt is depth map, acquired in time t, and i, j are indexes of area of interest. Resulting
signal has zero mean value and the reduced amplitude in comparison with the original signal.
It is possible to get better amplitude by computing over selection of torso or over selected pixels
with biggest change.

 

 

Figure 1: Example of one depth map
frame from MS Kinect v2.
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Figure 2: Processed signal divided into four parts of
Wake, Sleep1, Sleep2 and Falling Asleep (FA).



2.2 Filtering

As the MS Kinect depth sensor is not precise enough with its error increasing with the distance
of the measured object, the output of any depth map processing will be affected by noise
components. Typical respiratory rate for a healthy adult at rest is 12-20 breaths per minute
[8, 2, 12, 10], which corresponds to 0.2–0.33 Hz. This fact can be used for the selection of the
cut-off frequency of the low-pass FIR filter designed to filter out noise and preserve the slower
periodic signal of breathing. The best option is to use a Savitzky-Golay filter of the second
order:

y(k)s =

n∑
i=−n

Aiyk+i

n∑
i=−n

Ai

(3)

where Ai are weighting coefficients of filter with width of (2n + 1), which is able to preserve
steep changes in the signal while smoothing it. The cut-off frequency of 0.7 Hz (42 breaths per
minute) was chosen.
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Figure 3: The comparison of spectrograms evaluated from independent data; (a) acquired by
the contact method and (b) obtained by the the MS Kinect.

After application of designed filter on recorded data from depth sensor, were results of their
time-frequency analysis compared with data acquired by the contact method of the standard
polysomnography which is used for recording of breathing during the sleep. To compare both
records for confirming that important frequencies of breathing are preserved were computed
spectrograms from both signals. Comparison of results obtained by a contact method and by
the MS Kinect is presented in Figure 3, where is visible that both spectrograms have most
energy between 0.1 and 0.5 Hz, corresponding to breathing rate of 10 to 30 breaths per minute.

2.3 Spectral Analysis and Feature Extraction

The record presented in Figure 2 presents processed signal and its partitioning into three sections.
The two sections are during sleep, just divided in two parts because recorded person moved
during sleep. Spectral analysis of these parts (Figure 4) reveals that there is difference in
frequency of breathing while being awake and while sleeping, which is then used as one of
features for classification.

Taking into account all changes of processed signal, the most important differences of
selected parts of signal include; (a) the change of frequency, (b) the change of the amplitude.
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(a) Frequency analysis of record during wakefulness
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(b) Frequency analysis of record during sleep

Figure 4: Frequency analysis of selected parts of the record showing frequency componets (a)
during the wake stage and (b) during the sleep.

During wakefulness is the dominant frequency around 0.15 Hz and the height of amplitude is
0.13, while during the sleep is the dominant frequency around 0.25 Hz with amplitude height
of 0.5. The frequencies cannot be directly transferred into breaths per second because of MS
Kinects unstable sampling frequency changing from 8 Hz to 30 Hz, with its mean of 18 Hz.

2.4 Bayesian Classification

Bayesian classification is based on the Bayes’ theorem, which is stated by relation:

P (B|A) =
P (A|B)P (B)

P (A)
(4)

where P (A) and P (B) are independent probabilities, P (A|B) is conditional probability (prob-
ability A given B is true) and P (B|A) is conditional probability (probability of B given A is
true).

Expression of Equation (4) for P (Bj |A), when Bi is a random event (where i = 1 . . . k

and
∑k

i=1 P (Bi) = 1 , because all events Bi are mutually exclusive) is:

P (Bj |A) =
P (A|Bj)P (Bj)∑k
i=1 P (A|Bi)P (Bi)

(5)

The goal of classification is to find an estimate of class ĉk of an unknown instance x,
expressed as:

ĉk = maxc1,c2,...,cM (P (ck,x))

then probability estimation of x being in class {ck}Mk=1 when put in Equation (5) is:

P (ck|x) =
P (x|ck)P (ck)∑M
k=1 P (x|ck)P (ck)

(6)



It is possible to find fundamental characteristics of each attribute xj , including mean µck,xj

and variance σ2ck,xj
for each class ck, assuming Gaussian distribution of their values and indepen-

dence of their features. Gaussian distribution of each attribute xj and class ck is then defined
by relation:

P (xj |ck) =
1√

2πσ2ck,xj

exp
(
−

(xj − µck,xj )
2

2σ2ck,xj

)

It is possible to find out how likely to see observation x for class ck by relation:

P (x|ck) =
R∏

J=1

P (xj |ck)

where R is number of features.

3 Results

Figure 2 presents processed depth data as signal and divided into parts from which are created
features for three classes (two for sleep). These classes are Wake, Sleep1 and Sleep2.

Table 1: Distribution of features (1)

Class Count Percent

Wake 186 43.06%
Sleep1 208 48.15%
Sleep2 38 8.80%

The distribution of selected features which consists of signal amplitude and dominant
frequency are presented in Table 1. The classifier can be then defined to distinguish between
the stage of wakefulness and sleep.

Classes for the second classification include Wake, Falling Asleep (FA) and Sleep1. The
selected parts of processed recordings prepared for feature extraction are presented in Figure 2,
with distribution of features in Table 2. The classifier defined for these features also shows
possibility to classify some states in between of wakefulness and sleep.

Table 2: Distribution of features (2)

Class Count Percent

Wake 186 35.43%
Sleep1 208 39.62%

FA 131 24.95%

As is shown in Figure 3, the depth map can be processed with introduced methods using
Equations (1) and (2) so breathing rate is brought out out of noise, errors of depth sensor, and
movement of recorded person. The whole process made of three steps, denoising of depth maps
(2D median filter), processing of depth maps (Equation (1) or Equation (2)), and the low-pass
filtering of resulting signal (FIR filter Equation (3)).

4 Discussion

The analysis of record selected parts of signal revealed changes in frequency of breathing rate
(Figure 4) and amplitude of signal. The breathing rate during sleep is more rapid and more
shallow than during state of wakefulness (as it should be [4]). This change of breathing in
processed signal, and its use as one of feature for classification shows that used method is
sensitive enough to be useful.
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Figure 5: Classification (1) with classes for
Wake and Sleep1.
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Figure 6: Classification (2) with classes for
Wake, Falling Asleep (FA) and Sleep1.

This established property of record was used to train Bayesian classifiers, using as features
dominant frequency of signal and maximal change in amplitude. The first classifier was trained
on two classes (Sleep and Wake), and has 100% accuracy (Figure 5) with cross-validation of 0,
calculated by leave one out method. The second classifier was trained on three classes (Sleep,
Falling Asleep and Wake), with purpose to test possibilities of Bayesian classification for this
kind of problem, and has 97% accuracy (Figure 6) with cross-validation of 0.0248, calculated by
leave one out method.
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