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Abstract 

The paper deals with the model of a flexible rotor supported on journal bearings. It is 
assumed high rotational speed of the rotor and therefore the gyro effects on rotor 
bearings occur. This model differs from other solutions by the use of complex 
variables for the planar coordinates. The complex variables simplify mathematical 
equations and their implementation in Simulink.  

1 Introduction 
It is known that the journal bearing with an oil film becomes instable if the rotor rotation speed 

crosses a certain value, which is called the Bently-Muszynska threshold [1]. To prevent the rotor 
instability, the active control can be employed. The arrangement of proximity probes and 
piezoactuators in a rotor system are shown in Fig. 1. It is assumed that bushings, which are inserted 
into bearing bore with clearance, are a movable part in two perpendicular directions while rotor is 
rotating. 

   
Figure 1: Arrangement of the controllable journal bearing 

The research work supported by the GAČR (project no. 101/07/1345) is aimed at the design of 
the journal bearing active control based on the bushing position manipulation by the piezoactuators 
according to the proximity probe signals, which are a part of the closed loop including a controller. 
The effect of the feedback on the rotor stability is analyzed by [5]. Simulation of a rotor behavior 
requires creating a mathematical model, preferably in Matlab Simulink environment.  

The paper discusses the design of a mathematical model of rigid and flexible rotors. To simplify 
the model equations and the block diagram in Simulink, the complex variables are used which is the 
main advantages of the presented approach. 

2 Lumped parameter model of journal bearings 
There are many ways how to model journal bearings of a rotor system  

• the concept developed by Muszynska [2], consisting in replacement of an oil film continuum by a 
rotating system composed of a spring and damper  

• the lubricant flow prediction using a FE method for Reynolds equation solution [4]. 

This paper prefers the Muszynska because this concept offers an effective way to understand the 
rotor instability problem and to model a journal vibration active control system by manipulating the 
bushing position by actuators [1], which are a part of the closed loop composed of proximity probes 
and a controller. The solution of the Reynolds equation gives more precise rotor dynamic 
characteristics including rotor stability.  



Let the rotor angular velocity is designated by Ω  in radians per a second. It is assumed that the 
bushing is a movable part in two perpendicular directions while rotor is rotating. As was mentioned 
the mathematical model proposes to use complex variables to describe motion of the rotor and bushing 
in the plane, which is perpendicular to the rotor axis. The coordinate system is tied to stationary 
bearing housing with a cylindrical hole, inside of which is inserted a movable bearing bushing. The 
positions of the journal and bushing centre are given by the intersection point of both the movable 
component axis with the mentioned complex plane. The origin of the complex plane is situated in the 
centre of the mentioned cylindrical bearing bore as it is shown in Fig. 2. The position of the journal 
centre in the complex plane is designated by a position vector r while the position of the bushing is 
designated by a position vector u. 

 
(0, 0)  – coordinates of the cylindrical bore center 
r = (x(t), y(t))  – coordinates of the journal (rotor) center  
u = (ux(t), uy(t)) – coordinates of the bushing center 

 
Figure 2. Coordinate system 

The internal spring, damping and tangential forces are acting on the rotor. The external forces 
refer to forces that are applied to the rotor, such as unbalance, impacts and preloads in the form of 
constant radial forces. All these external forces are considered as an input for the mathematical model. 
The fluid pressure wedge is the actual source of the fluid film stiffness in a journal bearing and 
maintains the rotor in equilibrium. As Muszynska has stated these bearing forces can be modeled by a 
spring and damper system, which is rotating at the angular velocity Ωλ  (see Fig. 3), where λ  is a 
dimensionless parameter, which is slightly less than 0.5.  

 

Figure 3: Model of oil film 

The parameter λ  is denominated by Muszynska as the fluid averaged circumferential velocity 
ratio. It is assumed that the rotating journal drags the fluid in a space between two cylinders into 
motion and acts as a pump. It is easy to understand that the fluid circular velocity is varying across the 
gap as a consequence of the fluid viscosity. The validity of Muszynska’s assumption can be verified 
experimentally. It is known that an oscillation (an onset of instability) of the rotor starts when the rotor 
rotational speed exceeds a certain value and stops when RPM decreases under the other one. It can be 
shown by experiment, that when the rotor system is excited by a non-synchronous perturbation force 
with respect to the rotor rotational speed the resonance appears at the frequency, which is 
approximately equal to Ωλ . The simulation is prepared to prove the same properties of the 
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mathematical model, which is based on the substitution of the continuous oil film by the spring and 
damper system. 

Fluid forces acting on the rotor in coordinates rotating at the same angular frequency as the 
spring and damper system are determined by the position of the journal centre relating to the bushing 
centre and therefore are given by the formula (Tondl, 1991) 

 ( ) ( )rotrotrotrotrot DK ururF  −+−= , (1) 
where the parameters, K and D, specify proportionality of stiffness and damping to the relative 
position of the journal centre displacement vector rotrot ur −  and velocity vector rotrot ur  − , 
respectively. To model the rotor system, the fluid forces have to be expressed in the stationary 
coordinate system, in which the rotor centre-line displacement and velocity vectors are designated by 

ur −  and ur  − , respectively. 

To model the rotor system, the fluid forces have to be expressed in the stationary coordinate 
system, in which the rotor centre-line displacement and velocity vectors are designated by r and r , 
respectively. Conversion the complex rotating vector rotr   to the stationary coordinate system can be 
done by multiplication this vector by ( )tj Ωλexp , which is the same as multiplying the vector in the 
stationary coordinates by ( )tj Ω− λexp , see Fig. 4. 

 

Figure 4. Transformation of rotating coordinates to stationary coordinates 

The relationship between the mentioned vectors in rotating and stationary coordinates are given 
by the formulas 
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Substitution into the fluid force equation results in the following formula 
 ( ) ( ) ( )urururF −Ω−−+−= λjDDK  , (3) 

where the complex term ( )ur −ΩλjD  has the meaning of the force acting in the perpendicular 
direction to the vector ur − . As the rotor angular velocity increases, this force can become very big 
and can cause rotor instability. 

The parameters K and D, specifying oil film stiffness and damping, are a function of the journal 
centerline position vector, namely the oil film thickness. The position vector corresponds to the 
eccentricity of the journal in the bushing. It was proved that the closer position of the journal to the 
bearing wall and simultaneously the thinner oil film, the greater value of both these parameters. Some 
authors, such as Muszynska [3], assume that it is possible to approximate these functions by formulas  

 ( )( ) ( )( ) ( )( ) 512
0

22
0

32
0 1,1,1 eeDDeKK rrr −=−=−= λλ  (4) 

where e is a journal bearing clearance. The authors of this paper analyzed the other formula structure 
as well [5].  

3 Lumped parameter model of rigid rotors 
Due to the fact that the rotor is considered as a rigid body, the ends of the position vectors lie on 

a straight line, which is identical with the rotor axis, see Fig. 5. Angles φRe and φIm designate the 
inclinations of the rotor axis from the bearing housing axis, which is forming an intersection of two 
perpendicular planes serving for projection of the rotor axis. The plane, which is coinciding with the 
real axis, is horizontal while the other plane, which is coinciding with the imaginary axis, is vertical. 
The angle φRe specifies the inclination of the rotor axis projection into the horizontal plane from the 
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bearing housing axis while the angle φIm specifies the inclination of the rotor axis projection into the 
vertical plane from the bearing housing axis. 

 
Figure 5. Rotor inclinations 

There are two bearings supports of the rotating rotor. Let r be a position vector of the rotor 
center of gravity and l1 and l2 is the distances of the center of gravity from the journal bearings. The 
force F has to be indexed according to the journal bearings 
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Let the angels φRe and φIm be combined into the complex variable ImRe ϕϕ j+=Φ , called a 
complex angle. The position vectors of the rotor ends in both the journal bearings are as follows 
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The first derivation of the variables r1 and r2 with respect to time results 
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The equation of motion in stationary coordinates for the translational motion results from the 
Newton’s second law. The form of equation is as follows 

 ( )( ) 21
2 exp FFgr +++ΩΩ+−= δtjrmMM uu , (8) 

where M is the total rotor mass and g is acceleration of gravity. The unbalance force, which is 
produced by unbalance mass mu mounted at a radius ru, acts in the radial direction and has a phase δ  
at time 0=t .  

The equation of motion in stationary coordinates for the rotational motion results from the 
moment equilibrium of forces about the gravity center. The rotor rotating at the high rotation speed 
can be considered as a gyroscope [6] 

 ΦFFΦ  Ω+−= jCllA 1122 , (9) 
where A is a moment of inertia of the rotor about its axis and C is a moment of inertia of the same 
rotor about the axis, which is perpendicular to the rotor axis.  

4 Simulation study of the model behavior during run-up 
As it was stated before the numeric solution of the journal equation of motion is obtained by 

using Matlab-Simulink. The block diagram of the rotor system is shown in Fig. 6 and 7.  
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Figure 6. Integration of complex signals 

Some signals in the block diagram are complex variables. Integration of the complex signals 
with respect to time must be done for the real and imaginary component separately. Firstly, a complex 
variable is to be decomposed into the real and imaginary parts, and then the result of integration will 
be combined back into the complex variable. 

To avoid the problem with the choice of initial conditions, we assume that for 0=t , the rotor 
does not rotate and therefore x(0) = 0 and lies on the bottom of the bushing. The stiffness of oil film 
depends on the eccentricity of the bearing journal axis position, what is the value of y (0), it is 
necessary to solve nonlinear equation 
 ( )( ) ( ) 200 Mgyyk −=  (10) 
with the use of the Matlab function fsolve. 

To test the model response, the following values of the parameters were employed. The bushing 
position u2 = 0, while the variable position u1 corresponds to the rotation at the speed of 40 rad/s with 
the amplitude of 20 μm. The moments of inertia corresponds a short rigid hollow rotor of the outer 
diameter of 30 mm and the inner diameter of 20 mm, which was made of steel. The rotational speed 
runs up from 0 to 400 rad/s during 10 s. The simulation results are shown in Fig. 7. The rotation of the 
bushing in the journal bearing #1 does not influence the position of the rotor in the journal bearing #2. 

M =2.38 kg;  rotor mass 
lam0 = 0.475;   fluid averaged circumferential velocity ratio (lambda) 
K0 = 4000 N/m;   oil film stiffness 
D0 = 2000 Ns/m;  oil film damping coefficient  
e = 0.0001 m;  clearance in the journal bearing (100 μm) 
MMR = 0.00001 kg m product of the unbalance mass m mounted at a radius ur . 
L1 = 0.1 m;  distance of the rotor gravity center from the journal bearing #1 
L2 = 0.1 m;  distance of the rotor gravity center from the journal bearing #2 
A = 0.0006 kg m2; a moment of inertia of the rotor about its axis  
C = 0.008 kg m2; moment of inertia of the same rotor about the axis, which is  perpendicular  
 to the rotor axis. 

 

Figure 7. Block diagram of the rotor system supported on two journal bearings 



The rotational speed runs up from 0 to 400 rad/s during 10 s. The simulation results are shown 
in Fig. 8. The rotation of the bushing in the journal bearing #1 does not influence the position of the 
journal in the journal bearing #2. 

 

 
Figure 8. Effect of circulation of the bearing bushing #1 on movement of the journal in the bearing #2 

5 Results 
Test stand for investigation of possibilities to influence rotor behavior through external 

excitation of sliding journal bearings was designed and partly tested. The lumped parameter models of 
the rigid and flexible rotor system including gyroscopic effect were created and simulation study of 
rotor behavior during run-up was carried out. As it was find out for the rigid rotor, the displacement of 
the bushing #1 does not affect the displacement of the bushing #2.  
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