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Abstract 

Traditional logistic regression can be easily generalized for multi-class partition task. 
When the number of input variables is fixed and the patterns are non-separable, the task can be 
solved via likelihood maximization. Using Bayesian approach we formulate alternative but 
regularized optimization task. The adequate objective function for minimization is smooth and 
convex, then unimodal, its minimum is not in infinity and thus easily obtainable. The second 
extension consists of pruning the structure of multi-classifier to obtain the best model. The 
implementation of pruning process leads to the binary optimization task, which was solved via 
Fast Simulated Annealing (FSA) heuristics. The classifier and its implementation in the Matlab 
environment were used for the structural analysis of anatomically labeled domains of gray 
matter which were obtained from human brain MRI scans. The biomedical data include atlased 
brain maps of schizophrenic and control normal patients. Various geometrical characteristics of 
116 domains are used as complete model of schizophrenia and the optimum sub-model was 
found. 

 

1   Introduction 

Traditional probit regression according to Bliss [1] is oriented to classification into two classes 
strongly connected with Gaussian normal distribution. Lately, Berkson [2] introduced logit regression 
with logistic function inside. The logistic model is widely used [4, 5, 8] and its generalization to multi-
class model [4, 8] is known. There are also favorable multi-classification tasks beginning with iris 
flower classification according to Fisher [3]. Kukal and Vyšata [3] recommended to built up a kind of 
soft multi-classifier with constrained gain together with maximum sensitivity and specificity and 
design its learning as multi-criteria optimization task. Tran et all [7] discussed the possibility of ANN 
pruning, which is based on logistic regression and likelihood ratio testing. It was discussed only for 
two classes and non-separable patterns. The difficulties arise when the number of classes is higher 
then two and when the classes are separable due to dimensionality of input space. But there is a useful 
and not prohibited idea to transform the original data into another space with the higher dimensionality 
and thus better separability of patterns. The next section introduces generalized logistic model for 
multi-classification, first. 

 

2   Multi-Class Logistic Model 

Let n, N ∈ N, N > 1 be number of properties and number of classes. In this case the classifier f has n 
inputs and N outputs. The classifier realizes a partition among N classes just when it is described as a 
function 

f : Rn → QN where QN = { y ∈ PN | || y ||1 = 1} ⊂ PN = [0, 1]N     (1) 

According to [4, 8] we can generalize logit model of logistic regression for N classes as 
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)1(1, +×+ ∈∈ nNn RR Vx  and x0 ≡ 1. 

The model (2, 3) has redundant parameters. Expanding ratio in (2) by a factor exp(–s1) we obtain the 
better form 
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)1( +×∈ nNRW  and w1,j = 0 for j = 0,…, n. 

The model (4, 5) with unknown matrix W has only (N – 1)(n + 1) free parameters. The sensitivity of 
this model to input variables depends only on reduced matrix Wred, which is defined via relationship 
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where 1)1(
red , −×− ∈∈ NnN RR bW  is a bias vector for N classes. 

 

3   Maximum Likelihood Estimate and Its Regularization 

The estimation of model parameters is frequently performed via maximization of likelihood function 
or equivalently as a minimization of its negative logarithm. Resulting optimum point (if exists) is 
called maximum likelihood estimate. Let m be number of patterns, (xk, ck) be a pattern where 

ck ∈ {1,…, N} be class index for k = 1, …, N. Adequate optimization task for maximum likelihood 
estimation is 

min)L(ln)Φ( =−= WW          (7) 

where L is likelihood function for given pattern set. Recognizing that yk = f(xk) > 0 is a vector of class 
membership probabilities and denoting its i th component as (yk)i , we obtain explicitly  
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which is smooth and convex, thus unimodal function. But in special cases (including separable 
patterns) the minimum of (8) does not exist and the norm of W approaches infinity during search 
process. A kind of task regularization is necessary in this case. When the regularization is based on 
statistical theory, we can convert the task to M-estimate finding and testing. 

Bayesian approach is used in our paper to perform statistically correct regularization. It is based on a 
priori knowledge of distribution of estimated matrix Wred. Let wi,j ~ N(0,σ 2) be independent stochastic 
variables with Gaussian normal distribution for i = 2,…, N, j = 1,…, n. Here the standard deviation  

σ > 0 is supposed to be a priori known. But there is not a priori knowledge of bias vector b. Replacing 
likelihood by conditional probability in (7) we obtained new optimization task 
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Here, ||…||F is Frobenius norm and resulting function in (9) is smooth and convex, again. But in this 
case, the optimum of (9) exists in all cases. After the formula rearrangement 
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we recognize, that it is just M-estimate finding task. Thus we can use the theory of M-estimates for 
model and sub-model testing. The minimization of (9) is easy to perform in the Matlab environment 
using fminunc or fminsearch function. 

 

4   Model and Sub-Model Testing 

There are many approaches to model testing [8]. One of them is likelihood ratio test [8]. It is based on 
the comparison of given model and its sub-models. There are many models, which can be derived 

from the full model (4, 5). They can be generated by a control matrix nN ×−∈ )1(}1,0{B , where bi,j = 1 
means that input variable xj is used for the calculation of hi and thus wi,j is unknown parameter. When 
bi,j = 0, then wi,j = 0 and thus fixed. The indexing system in B is the same as in W. The number of free 
parameters for the estimation is then 
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The full model is a special case of the model with Q = (N – 1)n. Constant model with Q = 0 is an 
opposite extreme case. Let B, Bsub be control matrices of given model and its sub-model and Q, Qsub 
adequate number of free parameters. Then the relationship between their structures is 

QQ <∧≤ subsub BB                       (12) 

The traditional likelihood ratio test (LR-test) of model and its sub-model difference is based on the 
testing criterion 

)ln(ln2 subLLLR −=                       (13) 

where L, Lsub are maximized likelihood functions for the model and its sub-model. The stochastic 

variable LR has limiting distribution 2

subQQ−χ with Q – Qsub degrees of freedom. The adequate pvalue is 

directly obtained as 
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where F is cumulative distribution function of chi-squared distribution. The comparison of the model 
and its sub-model via LR-test brings a view on the significance of the model, which is compared with 
constant model. Let Ψ, Ψ0 be optimum values of (10) for the model with control matrix B and for the 
constant model. Comparing the model with constant one, we can measure the model significance via 
probability 
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Lower value of p0 indicates the higher significance of given model and various models can be ordered 
according to p0 to obtain the best one. 

Let mk be number of patterns in kth class. Then the optimal output of constant model is yk = mk/m  

for k = 1,…, N and the optimum value of (10) is 
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5   Model Pruning as Binary Optimization Task 

The minimization of (10) is easy task of convex programming but it is only a subject of inner loop. 
Statistical meaning of model pruning is in finding of the best model or its control matrix B, 
respectively.. There are 2(N – 1) n possibilities how to design the control matrix B. We find the best 
pruning as a global minimum of objective function 
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which is a binary optimization task with many local minima. The task was solved by the application of 
Fast Simulated Annealing (FSA). The probability of mutation pmut was fixed for each element of 
matrix B to obtain Bnew. The difference between q(Bnew) and q(B) was modulated by Cauchy 
distribution with amplitude Tk > 0. Resulting probability of state changing from B to Bnew is thus 
enumerated as 
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The cooling strategy was set to 
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where T0, n0, k are initial temperature, index scale and index of state change. The FSA method was 
supposed to be a heuristics, which increases the probability of global optimum reaching in the task 
(17). The numeric difficulties with the evaluation of p0 in (15) for (17) are solvable by the asymptotic 
expansion of cumulative distribution function complement. The FSA algorithm together with objective 
function (17) were also created in the Matlab environment. 

 

6   Biomedical Application 

The new Matlab library for regularized pruning of multi-logidtic model was used for optimum sub-
model finding in the case of schizophrenia classification. The complete set of 98 patients was split into  
schizophrenic (54 patients) and control normal (44 patients) groups. Their 3D MRI brain scans were 
labeled and atlased via Statistical Parametric Mapping (SPM5) technique and then used as 
morphological data source. Resulting labeled 3D scan (of every patient) consists of 116 anatomical 
domains with respect to gray matter filling. Various geometric characteristics were used to obtain the 
vector description of labeled 3D scan: number of separated domains, total volume, radius of maximum 
internal sphere, diameter, number of watershed domains, maximum volume of watershed domain, 
maximum internal sphere radius over watershed domains and maximum diameter over watershed 
domains. The classification into two clases (schizophrenia, control normal) was performed over 166×8 
morphological properties of gray matter. The optimum sub-model prefers total volumes in selected 
anatomical regions in general which means that traditional volumetric approach plays the significant 
role. 

       

7   Conclusion 

Extended logistic regression model was used for the realization of regularized multi-classifier. 
Parameter estimation was converted to convex optimization task for free minimization. Optimum sub-
model selection was inspired by likelihood ratio test and then performed using Fast Simulated 
Annealing. The properties of regularized multi-classifier were studied on schizophrenia classification 
task together with model structure pruning.  
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