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Abstract

Traditional logistic regression can be easily generalized for multi-class partition task.
When the number of input variablesisfixed and the patterns are non-separ able, the task can be
solved via likelihood maximization. Using Bayesian approach we formulate alternative but
regularized optimization task. The adequate objective function for minimization is smooth and
convex, then unimodal, its minimum is not in infinity and thus easily obtainable. The second
extension consists of pruning the structure of multi-classifier to obtain the best model. The
implementation of pruning process leads to the binary optimization task, which was solved via
Fast Smulated Annealing (FSA) heuristics. The classifier and its implementation in the Matlab
environment were used for the structural analysis of anatomically labeled domains of gray
matter which were obtained from human brain MRI scans. The biomedical data include atlased
brain maps of schizophrenic and control normal patients. Various geometrical characteristics of
116 domains are used as complete model of schizophrenia and the optimum sub-model was
found.

1 Introduction

Traditional probit regressionaccording to Bliss [1] is oriented to classificatiinto two classes
strongly connected with Gaussian normal distribbuticately, Berkson [2] introducddgit regression
with logistic function inside. The logistic modslwidely used [4, 5, 8] and its generalizatiomtalti-
class model4, 8] is known. There are also favorable muldsdification tasks beginning witkis
flower classificationaccording to Fisher [3]. Kukal and VySata [3] necoended to built up a kind of
soft multi-classifierwith constrained gaintogether with maximunsensitivity and specificitand
design its learning as multi-criteria optimizati@sk. Tran et all [7] discussed the possibilityANN
pruning, which is based on logistic regression and lilaith ratio testing. It was discussed only for
two classes and non-separable patterns. The diffisuarise when the number of classes is higher
then two and when the classes are separable dlimémsionality of input space. But there is a usefu
and not prohibited idea to transform the origiratiadinto another space with the higher dimensignali
and thus better separability of patterns. The extion introduces generalized logistic model for
multi-classification, first.

2 Multi-Class Logistic Model

Letn, N O N, N > 1 be number gbropertiesand number oflassesin this case thelassifierf hasn
inputs and\ outputs. The classifier realizepartition amongN classes just when it is described as a
function
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According to [4, 8] we can generalize logit modElagistic regression foN classes as
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The model (2, 3) has redundant parameters. Expamdtio in (2) by a factor expg) we obtain the
better form
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where
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(5)

W RN+ andwy; = 0 forj =0,...,n.

The model (4, 5) with unknown matri% has only N — 1)(h + 1) free parameters. The sensitivity of
this model to input variables depends only on redunatrixW,eq, Which is defined via relationship
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whereW _ ORM™Y" h RN is a bias vector faX classes.
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3 Maximum Likelihood Estimate and |ts Regularization

The estimation of model parameters is frequentlyopmed via maximization of likelihood function
or equivalently as a minimization of its negatiagdrithm. Resulting optimum point (if exists) is
calledmaximum likelihood estimateet m be number of patternsg( ¢,) be apatternwhere

¢ O {1,..., N} be class indexfor k = 1, ...,N. Adequate optimization task for maximum likelihood
estimation is

OW ) ==InL(W)=min (7)

where L is likelihood function for given pattern.sRecognizing thag, = f(x,) > 0 is a vector of class
membership probabilities and denotingi itscomponent asy(); , we obtain explicitly
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which is smooth and convex, thus unimodal functiBot in special cases (including separable
patterns) the minimum of (8) does not exist andnthem of W approaches infinity during search
process. A kind of task regularization is necessarthis case. When the regularization is based on
statistical theory, we can convert the task to Kireste finding and testing.

Bayesian approach is used in our paper to perftatisscally correct regularization. It is basedan
priori knowledgeof distribution of estimated matriW q Letw;;~ N(0,07) be independent stochastic
variables with Gaussian normal distributionifer2,...,N, j = 1,...,n. Here the standard deviation

o> 0 is supposed to be a priori known. But theneaisa priori knowledge of bias vector Replacing
likelihood by conditional probability in (7) we adhed new optimization task
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Here, ||...His Frobenius norm and resulting function in (9simsooth and convex, again. But in this
case, the optimum of (9) exists in all cases. Atfterformula rearrangement
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we recognize, that it is just M-estimate findingkaThus we can use the theory of M-estimates for
model and sub-model testing. The minimization gfi¢9easy to perform in the Matlab environment
usingf m nunc orf m nsear ch function.

4 Model and Sub-Model Testing

There are many approaches to model testing [8]. dtiem islikelihood ratio tes{8]. It is based on
the comparison of given model and its sub-modefgrd are many models, which can be derived

from the full model (4, 5). They can be generatgdalbontrol matrix B 0{01} V™", whereb;; = 1

means that input variabigis used for the calculation bf and thusw; is unknown parameter. When
bi; = 0, therw;; = 0 and thus fixed. The indexing systenBins the same as W. The number of free
parameters for the estimation is then

QZZLZ?zlh,j satisfying0< Q< (N -1)n (11)

The full modelis a special case of the model wifh= (N — 1)n. Constant modeWwith Q=0 is an
opposite extreme case. LBt By, be control matrices of given model and its sub-eh@hdQ, Qsus
adequate number of free parameters. Then theawthiip between their structures is

Bsub <B |:Jqub < Q (12)

The traditionallikelihood ratio test(LR-test) of model and its sub-model differencéb&sed on the
testing criterion

LR=2(InL-InLg,) (13)

wherel, Lg,, are maximized likelihood functions for the modaldaits sub-model. The stochastic
variableLR has limiting distribution)(é_qubwith Q — Qsup degrees of freedom. The adequpige IS
directly obtained as

pvalue =1- FQ—qub ( LR) (14)

where F is cumulative distribution function of dtjuared distribution. The comparison of the model
and its sub-model via LR-test brings a view ondigmificance of the model, which is compared with
constant model. Le¥, %4 be optimum values of (10) for the model with cohmatrix B and for the
constant model. Comparing the model with constaet @ve can measure the model significance via
probability

Po =1~ FQ (2(?’0 -¥)) (15)
Lower value ofp, indicates the higher significance of given modwe &arious models can be ordered
according tqy to obtain the best one.

Let m be number of patterns ki class. Then the optimal output of constant masigl + m/m

fork=1,...,N and the optimum value of (10) is

v, = _mz:ll YiIny, (16)

5 Model Pruning asBinary Optimization Task

The minimization of (10) is easy task of convexgreamming but it is only a subject of inner loop.
Statistical meaning of model pruning is in findimg the best model or its control matri,
respectively.. There ard"2 P" possibilities how to design the control matBx We find the best
pruning as a global minimum of objective function

qB) =logy, p, (17)



which is abinary optimization taskvith many local minima. The task was solved bydbgplication of
Fast Simulated Annealing (FSA). The probability méitation p,,,s was fixed for each element of
matrix B to obtain B, The difference between By, and gB) was modulated by Cauchy
distribution with amplitudel, > 0. Resulting probability of state changing fr@nto B, is thus
enumerated as
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The cooling strategy was set to
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whereT,, Ny, k are initial temperature, index scale and indestate change. The FSA method was
supposed to be a heuristics, which increases theapility of global optimum reaching in the task
(17). The numeric difficulties with the evaluatiohpg in (15) for (17) are solvable by the asymptotic
expansion of cumulative distribution function cosmpent. The FSA algorithm together with objective
function (17) were also created in the Matlab esrvinent.
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6 Biomedical Application

The new Matlab library for regularized pruning otilirlogidtic model was used for optimum sub-
model finding in the case of schizophrenia clasaifon. The complete set of 98 patients was gplit i
schizophrenic (54 patients) and control normal §dents) groups. Their 3D MRI brain scans were
labeled and atlased via Statistical Parametric MeppSPM5) technique and then used as
morphological data source. Resulting labeled 3D gcd every patient) consists of 116 anatomical
domains with respect to gray matter filling. Vasogeometric characteristics were used to obtain the
vector description of labeled 3D scan: number pasated domains, total volume, radius of maximum
internal sphere, diameter, number of watershed d@wnanaximum volume of watershed domain,
maximum internal sphere radius over watershed dmnand maximum diameter over watershed
domains. The classification into two clases (sgbliizenia, control normal) was performed over 166x8
morphological properties of gray matter. The optimsub-model prefers total volumes in selected
anatomical regions in general which means thaittoadl volumetric approach plays the significant
role.

7 Conclusion

Extended logistic regression model was used for rébadization of regularized multi-classifier.
Parameter estimation was converted to convex opdimon task for free minimization. Optimum sub-
model selection was inspired by likelihood ratisttend then performed using Fast Simulated
Annealing. The properties of regularized multi-sifier were studied on schizophrenia classification
task together with model structure pruning.
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