TUNING OF HEURISTICS FOR TSP

M. Mojzes, J. Kukal

Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague
Department of Software Engineering in Economics
Trojanova 13, 120 00 Prague, Czech Republic

Abstract

The heuristic algorithm performance evaluation may be a tricky task. The paper
introduces an approach on how to address the problem of evaluating heuristic
algorithm performance and thus enabling true tuning of these algorithms with
respect to a given task.

1 Introduction

The solving of an optimization problem often requires application of a heuristic algorithm.
There is a plenty of such algorithms and typically there are even more options of how to set
up the parameters of a specific heuristic. Coherently with the theorem of “No Free Lunch” [1],
each combination of heuristic algorithm and its settings can perform distinctively on different
optimization problems. Besides, there is not just one criterion for the evaluation of heuristic
performance itself.

Hence, when when developing a new algorithm or utilising an existing one to solve an
optimization problem (OP), it is relevant to question how to compare different heuristics and/or
their parameter settings when searching for the solution a specific OP.

A few attempts have been made [2] [3] to point out the difficulties one will deal with
when analyzing and comparing heuristic algorithms performance, or to describe some of the
“best practices” in this field, but a formalized framework is missing and we do believe that a
contribution to this field could be made.

In our previous work [7] we have introduced a set of techniques we find useful for the
analysis of the heuristic algorithms performance. These techniques can be divided into two main
categories - deterministic and stochastic. Apart from the principles on which these methods are
based, they are both delivering slightly different results. Using the deterministic methods, we
arrive at a precise ranking of the heuristics performance, i.e. we know which has the best
performance, which is the second one, etc. On the other hand, stochastic methods can generate
a “cluster” of the best performing heuristics. Every heuristic in this cluster is better than the
rest and heuristics in the cluster are all equally good by the means of statistical analysis.

Nevertheless, in this paper, we are focusing only on the deterministic methods and we are
proposing an approach that enables also the deterministic methods to produce results similar
to the latter category. Last, but not least, we will also demonstrate the use of this approach.

2 Methodology of comparison

Before detailed description of the proposed techniques, we begin with a more exact problem
definition and the definition of heuristics performance measures.

An OP can be defined as minimization of the objective function f: D — R where
D={xeX"|a<x<b}

is an appropriate domain. For purposes of this paper we are using the binary domain, X" =
{0,1}", but it can be an integer or a real one as well. Let’s suppose that we have an acceptable

value of the objective function f*. Then we can define a set of solutions, the goal set, as
G={xeD]|f(x) < f*}

where
f*> min{f(x) [x e D }.

We will suppose that we have a set of H € N heuristics, each having P; € N parameters for
t =1,2,...,H. Then p;; € P;; means that the setting of j-th parameter of i-th heuristic
pi,j belongs to domain P; ; which is a set of any distinct values specific for the given heuristic
algorithm implementation, e.g. real numbers, logical values, or text strings. Domain P;; has
the cardinality (number of elements) C;; = card(P; ;). Actual parameter settings and their
combinations may be based on recommendations (e.g. [6]), own experience, or by “random
shooting” in the worst case.

2.1 Performance measures

Following the principles of Monte Carlo simulation we will run every instance of heuristic al-
gorithm (meaning one specific heuristic approach with one specific setting of its parameters)
for a specified, sufficiently large, number of times ¢ € N and then we will define the following
estimates:

e Reliability, REL = m/q where m € N is the number of successful runs i.e. runs during
which the algorithm found a solution from the goal set before exceeding the maximum
allowed number of objective function evaluations (clearly m < ¢ and thus REL € [0, 1));

o Mean Number of Evaluations, MNE = % Yty NE; where NE; € N is the number of
evaluations of the objective function until the algorithm found a solution from the goal
set;

e Standard deviation of the Number of Evaluations,

SNE = \/ LS (NE;— MNE)2.

It may happen, that reliability will be so low that it is impossible to evaluate SN FE and for
that reason it is necessary to discard such instances from further analysis. Also, since reliability is
often a very sensitive attribute, we recommend further preliminary elimination of very unreliable
instances, no matter how effective they are.

The number of evaluations is a positive integer stochastic variable which significantly
varies in order. It is hardly possible to suppose that this variable has a distribution which is
close to the Gaussian normal one. It is a good habit to analyze its natural or decadic logarithm
instead of the original value to eliminate positive skewness [2]. So we introduce the logarithmic
measures as follows:

e Logarithm of Number of Fvaluations, LNE; =In NE; for i € 1,2,...,m;
e Mean Logarithm of the Number of evaluations, MLN = % S, LNE;

e Standard deviation of the Logarithm of Number of evaluations,

SLN = \/ LS (LNE, — MLN)2.

Our task is to maximize REL and minimize M LN and SLN together. However, at this
point it is obvious that REL, M LN and SLN are independent variables, and, typically, they

are in contrast with each other (e.g. a very reliable heuristic has higher M LN than another,
less reliable one). Therefore this is a typical example of a multi-criteria decision analysis.

We can start analysing weakly performing instances using the condition of Pareto opti-
mality [4] — this way we can exclude heuristics which are worse than others in every measured
characteristic. Nevertheless, in most cases this will not be of great impact and there will still be
plenty of instances to choose from.

2.2 Proposed methodology

The weighted approach, which is discussed in this paper, is based on minimizing the general
formula with positive weights w; € R for ¢ € 1,2, 3 of included performance measures:

F=wy - MLN +wy-SLN +ws3-LNR
where LNR = —In REL.

Weights can be determined using various techniques. Some of them are motivated by the
traditional Feoktistov’s criterion: FEO = MNE/REL [5].

However, we are suggesting a criterion that works on a presumption that NE can be
approximated by the exponential distribution with time constant T' [7] and it is in the form of

C-V6

™

F=MLN + -SLN + LNR

where C' is the Euler’s constant and just for illustration C'T\/é = 0.4501.

Moreover, to be able to decide which instance of heuristic algorithm is efficient and which
one is not, we are suggesting certain bounds of acceptance. We say that the instance k is efficient
when the value of its criterion Fj satisfies the following inequality:

T
V3q

Here, Finin is the score of the best instance and ®~! is inverse of cumulative distribution
function (cdf) of the normal distribution N(0, 1).

FkéFmin"' Q)_l(l—a)

Pgevious formula is based on pessimistic assumption that random variable F' has a variance
crfT = ’é—q which is ¢ times smaller than variance in the case of random shooting. Now we can
test the hypothesis Hg : Fy, = Fiin against Hy @ Fj, # Fiin at the level of significance a.

Under this assumptions the variable Fj, — Fini, follows normal distribution N(0, 20%) and
after substitution:

2
Fk_FminNN(Oa@)
In the case of symmetric testing, the hypothesis is rejected when
| — Faoin] > ——= - &7 11— 2)

V3q 2

However, we need to test whether Fj, < Fii, and thus reject the hypothesis if

\/—371 N1 —a)

Fk>Fmin+

and, for o = 0.05, it is approximately
2.9834

V4

Fk>Fmin+

3 Case study

3.1 Testing environment

The Travelling Salesman Problem (TSP) we have implemented consists of searching for the
shortest route between cities on an integer grid, where paths between all possible pairs of cities
exist and respective distances are calculated using the Euclidean distance. Omne can quickly
figure out that if we mark ¢ € N and b € N the width and height of our grid, then the shortest
length equals a-b+ /2 — 1 if both a and b are odd numbers or a - b otherwise. This way we can
set the f* value, since the total length of our path can be the objective function. However, for
a computer this is not an easy task to solve.

While on the other hand we have the heuristic algorithms to deal with the testing problem.
The first algorithm we have used is the Genetic Optimization (GO) [6], and since its detailed
description is out of scope of this paper, we will mention only the parameters and respective
settings which are to be analysed:

e N € {5,50,100} — the size of population,

Tse1 € {0.1,10,100} — temperature controlling the probability of selection,

R € {0.001,0.1} — radius of mutation,

rep € {1,3,5} — number of generation repetitions,

gde € {0,1} — indication as to whether gradually decrease Ty, and R over time.

Finally, our implementation of the Fast Simulated Annealing (FSA) [6], the second heuris-
tic, has a following set of parameters and settings:
e T € {0.00001,0.0001,0.001,0.01,0.1,1,10} — initial temperature,
e ng € {1,10,500,1000} — cooling delay,
e o€ {0.5,1,1.5,2} — cooling exponent.
To summarize the number of instances, we get NI =3-3-2-3-247-4-4 = 108+112 = 220.

The first part of the sum is the product of individual distinct parameter values counts of GO
and the second one of FSA, which performance we want to compare.

3.2 Results

To get a satisfactorily precise result, we set ¢ = 100, and thus we analyzed NI - ¢ = 22000 of
single runs of heuristic algorithms. Table 1 gives us a rough idea of what the outcome of our
experiment was.

Table 1: Overall performance results

GO FSA Total

All 108 112 220
Reliable 83 112 195
Effective 0 40 40

The best one 0 1 1

Note: A reliable instance is the one having REL > 0.2.

Even from this, very high-level, statistic we can draw interesting conclusions about the two
different heuristics: FSA, as opposed to GO, is convincingly the best heuristic for this problem.
Not only all of its instances were reliable and more than 35 percent of them were effective, but
in fact all of the effective instances were generated solely by FSA.

Table 2 supports the above mentioned conclusions and adds also another relevant obser-
vations, which are rather self-explanatory.

Table 2: Basic performance characteristics

Characteristic GO FSA
Average reliability 0.72 0.82
Average MNFE 1559.1 450.1

Average SNE 1380.4 585.9
Finin 6.23 5.43
Fivg 7.29 6.02
Finax 10.16 7.61

It is also worth mentioning that eight instances of GO had REL < 0.01. This prevented
us from calculating the F' criterion value altogether.

Last, but not least, we are presenting a detailed overview of the effective instances param-
eter settings in table 3.

Table 3: Effective instances parameter settings

Heuristic Parameter Value Times present Impact ratio

FSA To 0.0001 12 0.300
FSA Th 0.00001 11 0.275
FSA To 0.001 6 0.150
FSA Th 0.01 6 0.150
FSA To 0.1 2 0.050
FSA To 1 2 0.050
FSA To 10 1 0.025
FSA no 1 13 0.325
FSA no 10 12 0.300
FSA ng 500 9 0.225
FSA ng 1000 6 0.150
FSA a 1.5 12 0.300
FSA o 2 10 0.250
FSA o 0.5 9 0.225
FSA o 1 9 0.225

A table similar to table 3 may be of significant use, since it does reveal the parameters
and their settings which have the biggest impact on the performance of the heuristic. E.g. from
the values in this specific one we could conclude that it may be a good idea to pick Ty from
{0.0001,0.00001}, ng from {1,10} and « from {1.5,2} as these settings have notably higher
impact ratio than the remaining ones.

For the sake of illustration, we are also including an analogous table for the GO heuristic
(table 4), but of course, under the assumption that it would be the only available heuristic to
deal with the given problem.

Table 4: Effective instances parameter settings - GO only

Heuristic Parameter Value Times present Impact ratio

GO N 5 6 0.400
GO N 100 5 0.333
GO N 50 4 0.267
GO Tel 10 11 0.733
co Tour 0.1 2 0.133
GO Tsel 100 2 0.133
GO R 0.1 11 0.733
GO R 0.001 4 0.267
GO rep 1 7 0.467
GO rep 3 6 0.400
GO rep 5 2 0.133
GO gdc 0 11 0.733
GO gdc 1 4 0.267

In such case we may proclaim that good settings of GO are Ty = 10, R = 0.1, rep € {1, 3}
and gdc = 0. However, further search for the optimal setting of N might be irrelevant as it will
most probably not bring the desired effect.

However, here we are analysing the effects of possible tuning of individual settings. Un-
doubtedly, the settings, and most importantly the effects they may have on the performance,
are not completely independent — so it is here, where we see the most straight-forward potential
for future work, to analyse effects of settings combinations.

4 Conclusions

Using the proposed approach on a specific instance of Travelling Salesman Problem we may con-
clude that our implementation of heuristic algorithm of Fast Simulated Annealing significantly
outperformed the one of Genetic Optimization.

In general, the above-mentioned conclusion is an outcome of the technique that is devel-
oped from a traditional way of measuring the heuristic algorithm performance and deterministic
multi-criteria decision analysis methods. We do believe that the conclusion is valid also as a fea-
sibility demonstration of such approach and this can be used to better understand and interpret
the behaviour of a heuristic and reveal the potential effect of settings tuning.

Acknowledgement: This paper was created under the support of grant OHK4-165/11
CTU in Prague.

References
[1] Wolpert D. H., Macready W. G., No Free Lunch Theorems for Optimization, IEEE Trans-
actions on Evolutionary Computation, Vol. 1, No. 1, 1997

[2] McGeoch C. C., Experimental Analysis of Algorithms, Handbook of Global Optimization
Volume 2, Kluwer Academic Publishers, 2002, pp. 489-513

[3] Battiti R., Machine Learning Methods for Parameter Tuning in Heuristics, 5th DIMACS
Challenge Workshop: Ezxperimental Methodology Day, Rutgers University, 1996

[4] Van Veldhuizen D. A., Lamont G. B., Evolutionary Computation and Convergence to a
Pareto Front, Proceedings of the 3rd Annual Conference on Genetic Programming, Stanford
University, San Francisco CA, 1998, pp. 221-228

[5] Feoktistov V., Differential Evolution: In Search of Solutions, Springer, 2006

[6] Kvasnicka V., Pospichal J., Tino P., Fvolutionary Algorithms (in Slovak), STU Bratislava,
2000

[7] Mojzes M., Kukal J., Tran V. Q., Jablonsky J., Performance Comparison of Heuristic Al-
gorithms via Multi-Criteria Decision Analysis Proceedings of Mendel 2011 Conference, Brno
University of Technology, Brno, 2011, pp. 244-251

Matej Mojzes
mojzemat@Qfjfi.cvut.cz

Jaromir Kukal
jaromir.kukal@fjfi.cvut.cz

