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Abstract 
The aim of this paper is to present an improved and extended version of the Inverted 
Pendula Modeling and Control, a structured thematic Simulink block library which 
enhances the capabilities of the MATLAB/Simulink program environment by 
providing means for modeling and control of classical and rotary inverted pendula 
systems in form of function blocks, demo simulation schemes and applications with 
graphical user interface. 

1 Introduction 
Inverted pendula systems represent a significant class of highly nonlinear mechanical systems 

used in classical control education. Although underactuated and extremely unstable by nature, the 
systems are controllable and have a number of practical applications: problems such as balancing 
a broomstick on a handpalm, stabilization of a walking human or robot, control of a launching rocket 
or the vertical movement of a human shoulder or arm can all be simulated by some type of an inverted 
pendula system [1][2][3][4][5]. The diversity of modeled systems is reflected in the wide variety of 
available inverted pendula models. These may be classified according to several criteria: 

• the type of base which actuates the pendula – the system base may either be moving in a linear 
manner (classical or linear inverted pendulum system), or in the rotary manner in a horizontal 
plane (rotary inverted pendulum system); 

• the number of pendulum links attached to the mechanism – every extra pendulum link increases 
the number of the system’s degrees of freedom, making control in turn more challenging. For 
inverted pendula systems, controllability has been shown for up to 4 links attached to the base [6].  

• the distribution of mass along the pendulum rod – the pendulum links can either be homogenous 
rods with the mass concentrated in their center of gravity, or the rod may be considered to be 
massless, with the mass concentrated in the load at the end. 

Fig. 1 shows the schematic depictions of three characteristic representatives of inverted pendula 
systems which are most frequently used as testbed systems for nonlinear control design [1][2]: the 
classical single (one-link), classical double (two-link) and rotary single inverted pendulum system. 

 

Fig. 1 Typical representatives of inverted pendula systems: a) classical single inverted pendulum system, 
b) classical double inverted pendulum system, c) rotary single inverted pendulum system 

When the prominent position that inverted pendula systems occupy in nonlinear control theory 
was considered by the authors of this paper, the idea of providing integrated program support for the 
whole class of systems immediately arose. As a result, a structured thematic Simulink block library, 
Inverted Pendula Modeling and Control (IPMaC), has been developed since 2009 as a comprehensive 
software framework for the problems of analysis and control of inverted pendula systems. While the 



first presented version of the block library [3] was limited to classical inverted pendula systems, this 
paper describes an improved and extended 2011 version of the library which deals with two principal 
categories of inverted pendula systems (classical and rotary). The importance of the mutual analogy of 
the systems is emphasized: if a system of inverted pendula is approached as an instance of 
a generalized (n-link) system, crucial procedures related to system modeling and control algorithm 
design can be processed into an algorithm and implemented via symbolic software, represented in 
MATLAB by the Symbolic Math Toolbox. These considerations can be further extended to control 
algorithm design. 

2 The Installation and Structure of the IPMaC Block Library 
The IPMaC block library was designed in MATLAB/Simulink and it is to be used exclusively 

within this program environment. The core of the block library was developed under the configuration 
of OS Windows Vista™, MATLAB 7.6 (Release R2008a). After compatibility testing, extensions to 
the library were made under OS Windows 7™ Enterprise, MATLAB 7.9 (Release R2009b) as well as 
MATLAB 7.12 (R2011a). 

The installation process of the IPMaC block library consists of unzipping the provided 
InvPend.zip package into a desired directory and calling the included installation script slblocks.m. 
Once installed, the library becomes an integral part of the Simulink Library Browser, and the IPMaC 
function blocks are fully compatible with the blocks from the rest of Simulink built-in libraries. 

 
Fig. 2 The IPMaC, installed and active in the Simulink Library Browser 

Like in any other Simulink blockset, the IPMaC function blocks are thematically arranged into 
sublibraries which open when the corresponding item of the IPMaC tree structure in the Simulink 
Library Browser is singleclicked. The current version of the IPMaC has kept the core of the sublibrary 
structure from the original 2009 version: the Inverted Pendula Models sublibrary contains simulation 
models of the selected representatives of inverted pendula systems and the Inverted Pendula Control 
sublibrary is made up of function blocks that implement control algorithms. Additional sublibraries 
have been designed to incorporate the actuating mechanism block; useful sink and source blocks; or a 
heuristic swing-up controller. The sublibraries that the IPMaC is currently structured into are: 

• Inverted Pendula Control sublibrary – contains dynamic-masked function blocks which 
encapsulate state-feedback control algorithms 

• Inverted Pendula Models sublibrary – contains dynamic-masked simulation models of 
selected classical and rotary inverted pendula systems, pre-prepared for use in open-loop 
analysis as well as in state-feedback control design 



• Inverted Pendula Motors sublibrary – contains a block which implements the analytical 
model of the most frequently employed actuating mechanism (brushed direct-current motor) 

• Inverted Pendula Sinks and Sources sublibrary – concentrates all sink and source blocks 
which may find their use in pendula modeling and control, such as an input signal constrained 
in time and amplitude or a sink block that displays a signal in degrees rather than radians 

• Inverted Pendula Swing-up sublibrary – contains a heuristic controller which swings the 
pendulum from the downward to the upright equilibrium and switches to stabilizing control in 
the moment the pendulum is sufficiently close to the upright position.  

In addition to sublibraries, the root directory of the IPMaC includes two blocks of a special type which 
open up into a collection of links that lead to separate MATLAB/Simulink tools: 

• Demo Simulations - opens up into a tree structure of links to simulation schemes which 
illustrate the ways of interconnecting the IPMaC blocks to solve a variety of problems 

• Modeling and Linearization Tools – opens up into a set of links to a pair of applications 
which provide a comfortable, user-friendly graphical interface to modeling and linearization. 

3 Automatic Approach to Inverted Pendula Mathematical Modeling 
The automatic approach to motion equation derivation was promoted for a number of reasons: it 

yields a particularly precise approximation of the real system’s dynamics and eliminates any factual or 
numeric errors which could arise during manual mathematical modeling. To enable the automatic 
derivation of motion equations for inverted pendula systems, a general procedure has to be available 
which will output the equations for any given number of pendula [1][3][4]. Analysis of generalized 
classical and rotary inverted pendula systems therefore needs to be dealt with. 

The generalized system of classical inverted pendula is defined as a set of n>1 rigid, 
homogenous rods (pendulum links) which are interconnected in joints and attached to a cart (i.e. 
a stable mechanism which allows for movement alongside a single axis). Analogically, the generalized 
system of rotary inverted pendula is composed of a set of n>1 interconnected homogenous rods 
mounted on a rigid arm which rotates in a horizontal plane, perpendicular to the pendula. Every 
system of n inverted pendula is a multi-body composed of the base and the individual pendula, and 
thus has 1n +  degrees of freedom. It is a typical example of an underactuated system since the number 
of actuators is lower than the number of system links: the only input (the force ( )F t acting upon the 

cart or the torque ( )M t applied on the rotary arm) is used to control the n+1 outputs of the system: 

cart position [ ]m or arm angle [ ]rad , and pendula angles[ ]rad .  

3.1 Derivation of Motion Equations 

The Inverted Pendula Model Equation Derivator is a MATLAB GUI application which 
generates the motion equations for a user-chosen type of inverted pendula system (classical/rotary, 
single/double). Fig. 3 shows an example preview of the Derivator window which contains the 
generated model equations for the rotary single inverted pendulum system. The whole derivation 
process can be tracked in the command window (see the preview in [3]). 

The core of the Derivator tool is represented by MATLAB functions that use the Symbolic Math 
Toolbox to implement general procedures that derive the motion equations for a classical or rotary 
inverted pendula system. If we view the system’s degrees of freedom as the following vector of 
generalized coordinates [2][7]: 
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then the system can be mathematically described by the Euler-Lagrange equations of second kind (one 
for each generalized coordinate). The vector form of the equations is: 
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Fig. 3 Inverted Pendula Model Equation Derivator with the derived rotary single inverted pendulum model 

equations 

where ( )L t  (Lagrange function) is defined as the difference between the system’s kinetic and 

potential energy, ( )D t  (Rayleigh, dissipation function) describes the viscous (friction) forces and 

( )* tQ  is the vector of generalized external forces acting upon the system. The process of derivation of 

the motion equations to describe any kind of inverted pendula system has thus transformed into the 
determination of kinetic, potential and dissipation energies related to the base and all pendula: 
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Using well-known physical formulae and the necessary theoretical assumptions, general 
relations that describe the energetic balances of the base and i-th pendulum in a system of n inverted 
pendula were derived and can be found in [1] for both classical and rotary inverted pendula systems. 
Procedures which generate the equations of motion for any given system type and number of pendula 
were subsequently constructed and implemented as symbolic MATLAB functions (invpenderiv.m for 
classical, rotinvpenderiv.m for rotary) which produce the equations in the simplified and rearranged 
form, equivalent to the most likely form obtained by manual derivation. 

The mathematical models generated by the Derivator will hereafter be referred to as 
force/torque models, to distinguish them from voltage models, which will be derived in the following 
section. 

3.2 Simulation Models of Classical and Rotary Inverted Pendulum Systems 
The Inverted Pendula Models sublibrary of the IPMaC block library contains library blocks 

which represent the simulation models of a classical single, classical double and rotary single inverted 
pendulum system: the Classical Single Inverted Pendulum, the Classical Double Inverted Pendulum 
and the Rotary Single Inverted Pendulum block. The structure of all blocks is composed of logically 
designed subsystem blocks which are interconnected with respect to their mutual physical relations 
(Fig. 4); each subsystem block implements a nonlinear differential equation that is part of the system’s 
Lagrange mathematical model, obtained from the Inverted Pendula Model Equation Derivator 
application. Every model is composed of n+1 (2 for single, 3 for double) nonlinear second-order 
differential equations that describe the base and each pendulum. The motion equations that make up 
the respective mathematical models are specified in [1][2][3]. 
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Fig. 4 The structure of the Rotary Single Inverted Pendulum library block 

Each included system is equipped with a dynamic block mask (Edit – Mask Subsystem) which 
enables the user to edit the physical parameters and initial conditions, to enable or disable the input 
(force/torque) port and to flexibly adjust the number of the block’s output ports, which is equivalent to 
fitting a real model with sensors. This was implemented by creating scripts which add the 
Input/Output Port block into the scheme whenever the input or one of the outputs is marked as 
required; and replace it by the Ground/Terminator block if this is not the case.  

3.3 Simulation Models of Direct-Current Motors 
The practical use of force/torque models generated by the Derivator and included in the 

Inverted Pendula Models sublibrary is limited purely to the simulational environment: we are unable 
to manually generate a force or torque which, if applied to the base, would stabilize the pendula in 
a chosen position. As a result, electric motors need to be coupled with inverted pendula systems to act 
as mechanisms which actually produce the force or torque which actuates both the base and the 
attached pendula.  

Although there has recently been a rise in the percentage of brushless (EC, BLDC) direct-
current motors, three-phase synchronous motors and asynchronous (induction) motors [1][7][10], the 
great majority of authors dealing with modeling and control of inverted pendula systems still use the 
brushed direct-current (DC) motor as a high-performance drive to actuate their system. Hence, it was 
decided that the IPMaC/Inverted Pendula Motors sublibrary would presently contain a single block: 
the DC Motor for Inverted Pendula Systems,  which implements the mathematical model of a brushed 
direct-current (DC) motor in form of a voltage-to-force or a voltage-to-torque conversion relationship, 
derived in [1]. Appending the DC motor model to an inverted pendula system yields a voltage model 
of the system. 



 

 

Fig. 5 The dynamically changing dialog box of the DC Motor for Inverted Pendula Systems block 

The appearance of the block and the dynamic block mask can be adjusted to correspond with 
the type of inverted pendula system (classical/rotary) it is associated with (Fig. 5). 

4 Implementation of State-Feedback Control Algorithms 
It is well-known from experience that, once released and independently of the initial state, an 

inverted pendula system will always stabilize with all pendula in their natural hanging position, i.e. in 
their stable equilibrium. The principal control objective for all considered inverted pendula systems 
was therefore to stabilize all pendulum links in the vertical upright (inverted) position, which 
represents the unstable equilibrium of the system. Several additional problems (subobjectives) were 
approached and solved: 

• stabilizing the system following the pendulum’s initial deflection (nonzero initial conditions) 

• compensation of a time-constrained (impulse) or permanent (step) disturbance input signal,  

• tracking a desired position (reference trajectory) of the base. 

Linear state-feedback control was emphasized as the principal technique for the control of the inverted 
pendula systems since control of several degrees of freedom at once can only be ensured if the whole 
state vector is taken into consideration. 

4.1 Linear Approximation of Inverted Pendula Systems 
To be able to employ linear control techniques, the linear approximation of the nonlinear 

inverted pendulum system needs to be obtained. The motion equations generated by the Derivator are 
first rewritten into the standard (minimal ODE – ordinary differential equation) form [8]:  

 ( )( ) ( ) ( ) ( )( ) ( ) ( )( ) ( ),t t t t t t t+ + =ɺɺ ɺ ɺM θ θ N θ θ θ P θ V      (4) 

which provides the only way to express this kind of system in the nonlinear state-space form of 
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by defining the state vector as ( ) ( ) ( )( )Tt t t= ɺx θ θ and isolating the second derivative ( )tɺɺθ from (4). 



All inverted pendula systems included in the IPMaC were modeled in a way which defines the 
“all upright” equilibrium as ( ) T

St = =x x 0 . If the input ( ) 0Su t u= = , then the state-space description 

of the continuous linearized system is given as 
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and is obtained by expanding (5) into the Taylor series around a given equilibrium point and 
neglecting the terms of the order greater than 1.  

 
Fig. 6 Inverted Pendula Model Linearizator & Discretizer with the linearized and discretized state-space 

matrices of the classical double inverted pendulum system 

The process of transformation of the Lagrange mathematical model of an inverted pendulum 
system into a linearized state-space matrix form can be considerably sped up with help of another GUI 
application designed as part of the IPMaC: the Inverted Pendula Model Linearizator & Discretizer 
(Fig. 6). In case the type of inverted pendula system (classical/rotary), model parameters and operating 
(equilibrium) point have been provided by the user, the application generates the numeric form of the 
A, b, C, d continuous state-space matrices (see (6)) of the system in a selected operating  point. In case 
a discrete-time model is required, the Linearizator & Discretizer returns the discretized state-space 
matrices F, g, C, d of the chosen inverted pendula system provided the sampling period constant Tvz 
was entered and the continuous-time matrices have already been successfully computed. 

4.2 Inverted Pendula Control  
The expanded Inverted Pendula Control sublibrary of the IPMaC chiefly provides software 

support for the state-feedback methods of controller design for inverted pendula systems. Most 
importantly, the State-Feedback Controller with Feedforward Gain block implements the standard 
state-feedback control law calculated either from the continuous-time state-space description  

 ( ) ( ) ( ) ( ) ( ) ( ) ( )R ff u ff uu t u t u t d t t k w t d t= + + = − + +kx ,   (7) 

or from the discrete-time linear state-space description 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )R ff u D ffD uu i u i u i d i x i k w i d i= + + = − + +k ,   (8) 

where k ( Dk ) is the feedback gain which brings the state vector ( )tx  ( ( )ix ) into the origin of the state 

space, kff is the feedforward (setpoint) gain which makes the output track the reference command and 

( )ud t  ( ( )ud i ) is the unmeasured disturbance [1][2][3][9][10]. The preferred state-space description is 



selected in the dynamic block mask (Fig. 7) which also allows the user to choose the method to 
determine the feedback gain k ( Dk ) from between the pole-placement algorithm and the linear 
quadratic regulation (LQR) optimal control method. To match a particular control subobjective, the 
block’s appearance may be adjusted by optional enabling or disabling of the reference command input 

( )w t  ( ( )w i ) and/or the disturbance input  ( )ud t  ( ( )ud i ). 

 
Fig. 7 The dialog box of the State-Feedback Controller with Feedforward Gain block, dynamically changing 

according to the chosen method 

The structure of the State-Feedback Controller with Summator block implements a summator 

( )v i of all past error values [11], which ensures that the system output will track the changes in the 

reference command and eliminate the influence of permanent disturbances. The control law is given as 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2R ff Su i u i u i u i i k w i v i= + + = − + +k x ,   (9) 

The layout of the block mask once again allows the user to adjust the number of block input ports to 
match a control subobjective and to compute the state-feedback vector 1k  using a preferred method 

and state-space description.  

The Luenberger Estimator block provides a complete, reconstructed state vector by evaluating 
a model of the original discrete-time system in the structure: 

 ( ) ( ) ( ) ( ) ( )( )ˆ ˆ1i i u i i i+ = + + −x Fx g L y Cx    (10) 

where L  is the estimator gain matrix and ( )ˆ ix  is the reconstructed state vector. 

5 Inverted Pendula Demo Simulations Section – Overview 
The Inverted Pendula Demo Simulations section, accessible through the root directory of the 

IPMaC, displays a structured set of links to simulation schemes which demonstrate the functionality of 
the designed library blocks. Each demo scheme can be accessed by doubleclicking a block that briefly 
describes the issue it solves. Making a classic masked block to act as a link to another file involves 
creating an OpenFcn callback function within the Block Properties. 

Compared to the Demo Simulations section of the 2009 version of the library, the collection of 
links has now been notably expanded to include a wider variety of addressed problems. The most 
significant changes to the Demo Simulations section of the IPMaC were the following: 



 
Fig. 8 Structure of the root directory of the Demo Simulations section 

• the rotary single inverted pendulum model was introduced into the library  

• a DC motor block was implemented into a separate sublibrary; both force/torque models and 
voltage models of inverted pendula were used in simulations 

• the control section was expanded  to include more state-feedback controller blocks and control 
schemes; control algorithms were verified using every implemented simulation model  

• the tree structure of the Demo Simulations section was completely revised (Fig. 8). 

5.1 Open-loop Dynamic Analysis 
Evaluatory open-loop responses to an impulse signal were performed for all analyzed nonlinear 

simulation models both without the motor (force/torque model) and with the motor (voltage model). 
The respective simulation schemes can be located in the Nonlinear Analysis and Nonlinear Analysis 
with DC Motor sections. Examples are shown in Fig. 9 (force model of a classical double inverted 
pendulum) and Fig. 10 (voltage model of a classical single inverted pendulum). 
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Fig. 9 Classical double inverted pendulum system – simulation scheme and time behavior results (cart 

position and pendula angles) 
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Fig. 10 Classical single inverted pendulum system with a DC motor – simulation scheme and time 

behavior results (cart position and pendulum angle) 

Reasonable behavior of the open-loop responses of the simulation models (damped oscillatory 
transient state, system reaching the stable equilibrium point with all pendula pointing downward, 
visible backward impact of the pendulum/pendula on the base, motor-driven classical inverted 
pendulum response being much more rigid than that of its rotary equivalent) means the models can be 
considered accurate enough to serve as a reliable testbed for control algorithms. 

5.2 Verifications of Inverted Pendula State-Feedback Control 
The schemes in the Demo Simulations section document a number of simulation experiments 

which were performed to prove that the implemented controllers are able to meet the required control 
objectives for all available simulation models of inverted pendula systems. 

Each demo simulation scheme is designed as an independent unit. All computations required for 
the simulation to run (model parameter definition, state-space matrices of the linear approximation 
necessary for control algorithm design) are programmed to occur during the initialization of the 
scheme, which eliminates the need for additional m-files. Moreover, if the parameters of the 
simulation model are changed by the user in an open scheme, the Linearizator & Discretizer tool can 
be called from a provided link to obtain  modified state-space matrices (Fig. 11, Fig. 12). 

The example schemes below were picked from the State-Feedback Control and Summator 
Control sections to illustrate the way of interconnecting the blocks to control the voltage model of a 
rotary single inverted pendulum system. Fig. 11 depicts the simulation results given that the control 
objective was to maintain the desired arm angle value while keeping the pendulum upright. An 
estimator block was included to simulate measurement limitations. 
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Fig. 11 Rotary single inverted pendulum: simulation results for LQR control with estimator included; 

note that the arm is supposed to rotate for exactly a half-circle before returning to its initial position 

Finally, it is shown in Fig. 12 that applying state-feedback control with feedforward gain on 
a system is unsufficient if the steady-state effect of a permanent disturbance input needs to be 
eliminated. The compensation of permanent disturbances is successfully executed by a LQR algorithm 
with a summator included in the control structure. 
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Fig. 12 Rotary single inverted pendulum – simulation results for LQR control with a summator 

(integral action) 

5.3 Verifications of Inverted Pendula Swing-up 
To illustrate the problem of pendulum swing-up, the Swing-up Controller block was included in 

the IPMaC/Inverted Pendula Swing-up sublibrary. The block implements three heuristic, energy-based 
control laws (cosine value controller, zero speed controller and absolute value controller) that swing 
the pendulum up from the downward to the upright equilibrium [12]. A transition mechanism switches 
between swing-up and stabilizing control provided the pendulum is sufficiently close to the upright 
position. The block mask allows the user to select a swing-up method, the input voltage magnitude  
and the size of the balancing region. 
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Fig. 13 Swing-up and stabilization of the rotary single inverted pendulum system – comparison of methods 

The effectiveness of the three swing-up methods was compared in a simulation experiment 
involving the rotary single inverted pendulum model (Fig. 13).  

6 Conclusion 
The purpose of this paper was to present a comprehensive and unifying approach to the problem 

of modeling and control of classical and rotary inverted pendula dynamical systems. A structured, 
thematic Simulink block library, Inverted Pendula Modeling and Control (IPMaC), was developed to 
serve as a software framework for all solved issues. The library is composed of a set of custom 
function blocks which centers around the simulation models of  the classical single, classical double 
and rotary single inverted pendulum system. An integral part of the library is the Demo Simulations 
section, which is basically a collection of links to simulation schemes which illustrate the ways of 
interconnecting the blocks to solve various problems related to analysis and control of inverted 
pendula systems. 



Practical importance of symbolic mathematical software, represented in MATLAB by Symbolic 
Math Toolbox, was demonstrated: general symbolic procedures were implemented that either yield the 
motion equations of a mathematical model for a user-chosen classical or rotary inverted pendulum 
system, or perform the symbolic linear transformation of a specified system in a chosen equilibrium 
point. Applications with graphical user interface were developed to provide a comfortable and user-
friendly access to both procedures. 

The presented Simulink block library offers solid program support for both modeling and 
control of inverted pendula systems, based on the modern object-oriented approach to problem 
solving. Since the library was designed as an open system with the classical and rotary inverted 
pendula simulation models at its core, it will be possible to add a wider variety of controller blocks 
and control schemes to the already included state-feedback and optimal control algorithms. Model 
predictive control algorithms and exact linearization are considered among other candidate structures. 
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