
DG METHOD FOR SCALAR LINEARCONVECTION-DIFFUSION EQUATIONJ. HozmanTehnial University of Libere, Faulty of Siene, Humanities and EduationAbstratAmong a wide lass of numerial methods, the disontinuous Galerkin (DG)method represents a promising tehnique for the solution of onvetion-di�usionproblems. The paper is devoted to the numerial solution of a salar linearonvetion-di�usion equation. For the spae disretization DG method is usedand time is disretized with the aid of bakward Euler method. The resultingsheme leads to a system of linear algebrai equations at eah time step. Resultsof numerial experiments are presented.1 IntrodutionOur aim is to present a suÆiently robust, aurate and eÆient numerial method for solution ofonvetion-di�usion problems. As a model problem, we onsider a one-dimensional salar linearonvetion-di�usion equation. The disontinuous Galerkin (DG) methods have beome verypopular numerial tehnique for the solution of suh problems. DG spae semi-disretizationuses higher order pieewise polynomial disontinuous approximation on arbitrary meshes, for asurvey, see [2℄, [3℄. Among several variants of DG methods we prefer the so-alled interior penaltyGalerkin (IPG) disretizations. We deal with three variants of IPG, namely nonsymmetri(NIPG), symmetri (SIPG) and inomplete interior penalty Galerkin (IIPG) tehniques, see [1℄.The disretization in time oordinate is performed with the aid of the bakward Euler method,sidetraking the time step restrition well-known from the expliit shemes. Consequently, thefully disrete problem is represented by the system of algebrai equations. Within this paperwe present the derivation of the whole sheme, from a ontinuous problem to the disrete one,and append the set of numerial experiments arried out in MATLAB, for more details see [6℄.2 Problem formulationWe onsider the following unsteady linear 1D onvetion{di�usion problem: Let I � (a; b) � IRbe an open bounded interval and T > 0. We seek a funtion u : QT = I � (0; T ) ! IR suh that�u�t + ��x ((x)u) = ��x ��(x) ��xu�+ g in QT ; (1)u(a; t) = uaD(t) and u(b; t) = ubD(t); t 2 (0; T ) (2)u(x; 0) = u0(x); x 2 I; (3)where g : QT ! IR is the soure term, uaD; ubD : (0; T ) ! IR are Dirihlet boundary onditions,u0 : I ! IR is the initial ondition, (x) : I ! IR represents the onvetive part and �(x) : I ! IRplays a role of di�usive oeÆient. Moreover, we assume9 �0; �1 2 IR : 0 < �0 � �(x) � �1 8x 2 I: (4)The initial boundary value problem (1) { (3) is equipped with the initial ondition (3) andthe Dirihlet boundary onditions (2) presribed at both boundary points of domain I but it isalso possible to onsider mixed Dirihlet{Neumann boundary onditions.



3 DisretizationLet Th (h > 0) be a family of the partitions of the losure I = [a; b℄ of the domain I into Nlosed mutually disjoint subintervals Ik = [xk�1; xk℄ with length hk := xk�xk�1 and the symbolJ stands for an index set f1; : : : ; Ng. Then we all Th = fIk; k 2 J g a triangulation withspatial step h := maxk2J (hk) and interval Ik an element. By Eh we denote the smallest possibleset of all endpoints of all subintervals Ik, i.e. Eh = fx0 = a; x1; : : : ; xN�1; xN = bg. Further, welabel by EIh the set of all inner nodes. Obviously, Eh = EIh [ fa; bg.DG method allows to treat with di�erent polynomial degrees over elements. Therefore,we assign a positive integer pk as a loal polynomial degree to eah Ik 2 Th. Then we set thevetor p = fpk; Ik 2 Thg. Over the triangulation Th we de�ne the �nite dimensional spae ofdisontinuous pieewise polynomial funtionsShp � Shp(I;Th) = fv; vjIk 2 Ppk(Ik) 8 k 2 J g; (5)where Ppk(Ik) denotes the spae of all polynomials of degree � pk on Ik, Ik 2 Th. Consequently,the approximate solution of the loal problem (1){(3) is sougth in the spae Shp.For eah x 2 EIh there exist two elements Ik, Ik+1 2 Th suh that Ik \ Ik+1 = fxg. Let usdenote v(x+) = lim"!0+ v(x+ ") and v(x�) = lim"!0+ v(x� ") (6)the traes of v at inner points of I. Moreover,[v(x)℄ = v(x�)� v(x+); hv(x)i = 12 �v(x�) + v(x+)� ; (7)denote the jump and mean value of funtion v at points x 2 EIh, respetively. By onvention,we also extend the de�nition of jump and mean value for endpoints of domain I, i.e.[v(x0)℄ = �v(x+0 ); hv(x0)i = v(x+0 ); [v(xN )℄ = v(x�N ); hv(xN )i = v(x�N ) (8)Now, we reall the spae semi-disrete DG sheme presented in [7℄. The ruial item ofthe DG formulation of model problem is the treatment of the onvetive part. The onvetiveterms are approximated with the aid of the following numerial ux H(�; �) through node x 2 Ehin the positive diretion (i.e. outer normal is equal to one):H�u(x�); u(x+)� = ( (x) � u(x�); if (x) > 0(x) � u(x+); if (x) � 0 ; (9)whih is based on the onept of upwinding, see [5℄. The hoie of u(x�); u(x+) for boundarypoints fa; bg is neessary to speify. Here we use:u(a�) = uaD and u(b+) = ubD: (10)A partiular attention should be also paid to the treatment of the di�usive terms, in order to re-plae the inter-element ontinuity, we add some stabilization and penalty terms into formulationof the disrete problem.Therefore, we say that uh 2 C1(0; T ;Shp) is the semi-disrete solution of the problem(1) { (3) if (uh(0); vh) = (u0; vh) 8 vh 2 Shp and��uh(t)�t ; vh�+ bh(uh(t); vh) + a�h (uh(t); vh) + �0J�h (uh(t); vh) = l�h (vh) (t) (11)8 vh 2 Shp; 8 t 2 (0; T );



where (�; �) denotes the L2(I)-salar produt anda�h (u; v) = Xk2J ZIk �(x) � �u(x; t)�x � v0(x) dx� Xx2Eh ��(x) � �u(x; t)�x � [v(x)℄ (12)+� Xx2Eh 
�(x) � v0(x)� [u(x; t)℄;bh(u; v) = �Xk2J ZIk (x) � u(x; t) � v0(x) dx+ Xx2EIhH�u(x�; t); u(x+; t)� [v(x)℄ (13)�H�uaD(t); u(x+)� � v(a+) + H�u(x�); ubD(t)� � v(b�)J�h (u; v) = Xx2EIh �(x)[u(x; t)℄ [v(x)℄ + �(a) � u(a+; t) � v(a+) + �(b) � u(b�; t) � v(b�) (14)l�h (v)(t) = ZI g(x; t) � v(x) dx���(a) � v0(a+) � uaD(t) + ��(b) � v0(b�) � ubD(t) (15)+�0�(a) � uaD(t) � v(a+) + �0�(b) � ubD(t) � v(b�):Aording to value of parameter �, we speak of symmetri (� = �1), inomplete (� = 0)or nonsymmetri (� = 1) variants of stabilization of DG method, i.e., we generally onsider threevariants of the di�usion form a�h and right-hand side form l�h . Penalty terms are representedby J�h and the penalty parameter funtion � : Eh ! IR in (14) and (15) is de�ned in spirit of [4℄as �(x) = CWd(x) with d(x) = 8>>>><>>>>: h1=p12 ; x = a;min�hk=p2k; hk+1=p2k+1� ; x 2 EIh ^ fxg = Ik \ Ik+1;hN=pN 2 ; x = b; (16)where CW > 0 is a suitable onstant depending on the used variant of sheme and on the degreeof polynomial approximation.The problem (11) represents a system of ordinary di�erential equations (ODEs) for uh(t)whih has to be disretized in time by a suitable method. Sine these ODEs belong to the lassof sti� problems and due to linearity of onvetive and di�usive terms it is advantageous to usean impliit approah via the bakward Euler method.Let 0 = t0 < t1 < : : : < tM = T be a partition of the interval [0; T ℄ and �l � tl+1 � tl,l = 0; 1; : : : ;M�1. We de�ne the approximate solution of problem (1){(3) as funtions ulh 2 Shp,ulh � uh(tl); tl 2 [0; T ℄; l = 1; : : : ;M , satisfying the following identity1�l �ul+1h � ulh; vh�+ a�h �ul+1h ; vh�+ bh�ul+1h ; vh� (17)+�0J�h �ul+1h ; vh� = l�h (vh) (tl+1) 8 vh 2 Shp;where u0h is Shp-approximation of u0.The resulting method is pratially unonditionally stable, has a high order of auraywith respet to the spae oordinates and the �rst order of auray with respet to time. Ateah time instant tk+1 2 [0; T ℄, we have to solve only one system of linear algebrai equationsrepresenting by the disrete problem (17).4 Numerial experimentsIn this setion, we onsider three onvetion{di�usion problems in 1D with (pieewise) onstantonvetion oeÆient as well as visosity. The whole algorithm is implemented in MATLAB and



uses pieewise linear, quadrati and ubi approximations on partition of I with onstant meshsize h and time step � .The �rst numerial example represents the ase of ontinuous oeÆients and steady-statesolution. We set (x) = 1:0, �(x) = 0:1, I = (0; 1), T = 1:0 and de�ne the funtion g and theinitial and boundary onditions in suh a way that the exat solution has the following form:u(x; t) = 1 + 4(1 � e�10t)x(1� x): (18)The mesh size h = 0:01 and the time step � = 0:001. We arried out omputations by pieewiseubi approximations and set � = 0 (inomplete variant). Figure 1 shows the omparison withexat solution (18) and development of approximation error eh = kulh � u(�; tl)kI .
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Figure 1: Continuous ase (steady): Comparison of exat and approximate solution (left),development of disretization error (right)In the seond experiment, the parameters of omputation were the same as in the �rstexample exept for funtion g and the initial and boundary onditions, whih are hosen in suha way that the exat solution has the unsteady form:u(x; t) = 1 + 4x(1 � x)t: (19)One an see in Figure 2 almost idential behavior of approximate solution in omparison withexat one.
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Figure 2: Continuous ase (unsteady): Comparison of exat and approximate solution (left),development of disretization error (right)The last experiment is devoted to the ase of disontinuous pieewise onstant onvetionand di�usion oeÆients. Without loss of generality, we take(x) = 8<: 0:1; if x 2 h0; 12i4:0; if x 2 �12 ; 1i and �(x) = 8<: 0:01; if x 2 h0; 12i1:0; if x 2 �12 ; 1i ; (20)g(x) � 0, T = 0:6 and the following initial and boundary onditions:u(0; t) = u(1; t) = 1:0; t 2 [0; T ℄ and u(x; 0) = exp ��1:2(1:2 � 6x)2� ; x 2 I: (21)



The obtained satisfatory results, illustrating the poteny of presented method, are depited inFigure 3.
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Figure 3: Disontinuous ase: Development of approximate solutions, u0 (initial ondition), u1(solution at t = 0:2), u2 (solution at t = 0:4) and u3 (solution at t = 0:6)5 ConlusionWe have dealt with the numerial solution of the linear onvetion-di�usion equation. Wehave presented DG approah together with the bakward Euler method for spatial and timedisretization, respetively. A set of numerial examples produed satisfatory results and il-lustrated the poteny of the resulting sheme even for disontinuous onvetion oeÆient andvisosity. For the future work, we intend to extend this method to parallel implementation on-sisting of domain deomposition tehniques and a semi-impliit treatment of loal subproblemswith interfae onditions.Aknowledgement. The paper was supported by the ESF Projet No. CZ.1.07/2.3.00/09.0155\Constitution and improvement of a team for demanding tehnial omputations on parallelomputers at TU Libere".Referenes[1℄ D. N. Arnold, F. Brezzi, B. Cokburn, and L. D. Marini. Uni�ed analysis of disontinuousGalerkin methods for ellipti problems. SIAM J. Numer. Anal., 39(5):1749{1779, 2002.[2℄ B. Cokburn. Disontinuous Galerkin methods for onvetion dominated problems. In T. J.Barth and H. Deonink, editors, High{Order Methods for Computational Physis, LetureNotes in Computational Siene and Engineering 9, pages 69{224. Springer, Berlin, 1999.[3℄ B. Cokburn, G. E. Karniadakis, and C.-W. Shu, editors. Disontinuous Galerkin Methods.Springer, Berlin, 2000.[4℄ V. Dolej�s�� and J. Hozman. A priori error estimates for dgfem applied to non-stationary non-linear onvetiondi�usion equation. In G. Kreiss et. Al. Eds., editor, Numerial Mathematisand Advaned Appliations, ENUMATH 2009, pages 459{468. Springer, 2010.[5℄ M. Feistauer, J.Felman, and I. Stra�skraba. Mathematial and Computational Methods forCompressible Flow. Oxford University Press, Oxford, 2003.[6℄ A. Gilat. MATLAB An Introdution with Appliations. John Wiley & Sons, In., 2004.[7℄ B. Rivi�ere. Disontinuous Galerkin Methods for Solving Ellipti and Paraboli Equations:Theory and Implementation. Frontiers in Applied Mathematis. Soiety for Industrial andApplied Mathematis, Philadelphia, 2008.
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