
DG METHOD FOR SCALAR LINEARCONVECTION-DIFFUSION EQUATIONJ. HozmanTe
hni
al University of Libere
, Fa
ulty of S
ien
e, Humanities and Edu
ationAbstra
tAmong a wide 
lass of numeri
al methods, the dis
ontinuous Galerkin (DG)method represents a promising te
hnique for the solution of 
onve
tion-di�usionproblems. The paper is devoted to the numeri
al solution of a s
alar linear
onve
tion-di�usion equation. For the spa
e dis
retization DG method is usedand time is dis
retized with the aid of ba
kward Euler method. The resultings
heme leads to a system of linear algebrai
 equations at ea
h time step. Resultsof numeri
al experiments are presented.1 Introdu
tionOur aim is to present a suÆ
iently robust, a

urate and eÆ
ient numeri
al method for solution of
onve
tion-di�usion problems. As a model problem, we 
onsider a one-dimensional s
alar linear
onve
tion-di�usion equation. The dis
ontinuous Galerkin (DG) methods have be
ome verypopular numeri
al te
hnique for the solution of su
h problems. DG spa
e semi-dis
retizationuses higher order pie
ewise polynomial dis
ontinuous approximation on arbitrary meshes, for asurvey, see [2℄, [3℄. Among several variants of DG methods we prefer the so-
alled interior penaltyGalerkin (IPG) dis
retizations. We deal with three variants of IPG, namely nonsymmetri
(NIPG), symmetri
 (SIPG) and in
omplete interior penalty Galerkin (IIPG) te
hniques, see [1℄.The dis
retization in time 
oordinate is performed with the aid of the ba
kward Euler method,sidetra
king the time step restri
tion well-known from the expli
it s
hemes. Consequently, thefully dis
rete problem is represented by the system of algebrai
 equations. Within this paperwe present the derivation of the whole s
heme, from a 
ontinuous problem to the dis
rete one,and append the set of numeri
al experiments 
arried out in MATLAB, for more details see [6℄.2 Problem formulationWe 
onsider the following unsteady linear 1D 
onve
tion{di�usion problem: Let I � (a; b) � IRbe an open bounded interval and T > 0. We seek a fun
tion u : QT = I � (0; T ) ! IR su
h that�u�t + ��x (
(x)u) = ��x ��(x) ��xu�+ g in QT ; (1)u(a; t) = uaD(t) and u(b; t) = ubD(t); t 2 (0; T ) (2)u(x; 0) = u0(x); x 2 I; (3)where g : QT ! IR is the sour
e term, uaD; ubD : (0; T ) ! IR are Diri
hlet boundary 
onditions,u0 : I ! IR is the initial 
ondition, 
(x) : I ! IR represents the 
onve
tive part and �(x) : I ! IRplays a role of di�usive 
oeÆ
ient. Moreover, we assume9 �0; �1 2 IR : 0 < �0 � �(x) � �1 8x 2 I: (4)The initial boundary value problem (1) { (3) is equipped with the initial 
ondition (3) andthe Diri
hlet boundary 
onditions (2) pres
ribed at both boundary points of domain I but it isalso possible to 
onsider mixed Diri
hlet{Neumann boundary 
onditions.



3 Dis
retizationLet Th (h > 0) be a family of the partitions of the 
losure I = [a; b℄ of the domain I into N
losed mutually disjoint subintervals Ik = [xk�1; xk℄ with length hk := xk�xk�1 and the symbolJ stands for an index set f1; : : : ; Ng. Then we 
all Th = fIk; k 2 J g a triangulation withspatial step h := maxk2J (hk) and interval Ik an element. By Eh we denote the smallest possibleset of all endpoints of all subintervals Ik, i.e. Eh = fx0 = a; x1; : : : ; xN�1; xN = bg. Further, welabel by EIh the set of all inner nodes. Obviously, Eh = EIh [ fa; bg.DG method allows to treat with di�erent polynomial degrees over elements. Therefore,we assign a positive integer pk as a lo
al polynomial degree to ea
h Ik 2 Th. Then we set theve
tor p = fpk; Ik 2 Thg. Over the triangulation Th we de�ne the �nite dimensional spa
e ofdis
ontinuous pie
ewise polynomial fun
tionsShp � Shp(I;Th) = fv; vjIk 2 Ppk(Ik) 8 k 2 J g; (5)where Ppk(Ik) denotes the spa
e of all polynomials of degree � pk on Ik, Ik 2 Th. Consequently,the approximate solution of the lo
al problem (1){(3) is sougth in the spa
e Shp.For ea
h x 2 EIh there exist two elements Ik, Ik+1 2 Th su
h that Ik \ Ik+1 = fxg. Let usdenote v(x+) = lim"!0+ v(x+ ") and v(x�) = lim"!0+ v(x� ") (6)the tra
es of v at inner points of I. Moreover,[v(x)℄ = v(x�)� v(x+); hv(x)i = 12 �v(x�) + v(x+)� ; (7)denote the jump and mean value of fun
tion v at points x 2 EIh, respe
tively. By 
onvention,we also extend the de�nition of jump and mean value for endpoints of domain I, i.e.[v(x0)℄ = �v(x+0 ); hv(x0)i = v(x+0 ); [v(xN )℄ = v(x�N ); hv(xN )i = v(x�N ) (8)Now, we re
all the spa
e semi-dis
rete DG s
heme presented in [7℄. The 
ru
ial item ofthe DG formulation of model problem is the treatment of the 
onve
tive part. The 
onve
tiveterms are approximated with the aid of the following numeri
al 
ux H(�; �) through node x 2 Ehin the positive dire
tion (i.e. outer normal is equal to one):H�u(x�); u(x+)� = ( 
(x) � u(x�); if 
(x) > 0
(x) � u(x+); if 
(x) � 0 ; (9)whi
h is based on the 
on
ept of upwinding, see [5℄. The 
hoi
e of u(x�); u(x+) for boundarypoints fa; bg is ne
essary to spe
ify. Here we use:u(a�) = uaD and u(b+) = ubD: (10)A parti
ular attention should be also paid to the treatment of the di�usive terms, in order to re-pla
e the inter-element 
ontinuity, we add some stabilization and penalty terms into formulationof the dis
rete problem.Therefore, we say that uh 2 C1(0; T ;Shp) is the semi-dis
rete solution of the problem(1) { (3) if (uh(0); vh) = (u0; vh) 8 vh 2 Shp and��uh(t)�t ; vh�+ bh(uh(t); vh) + a�h (uh(t); vh) + �0J�h (uh(t); vh) = l�h (vh) (t) (11)8 vh 2 Shp; 8 t 2 (0; T );



where (�; �) denotes the L2(I)-s
alar produ
t anda�h (u; v) = Xk2J ZIk �(x) � �u(x; t)�x � v0(x) dx� Xx2Eh ��(x) � �u(x; t)�x � [v(x)℄ (12)+� Xx2Eh 
�(x) � v0(x)� [u(x; t)℄;bh(u; v) = �Xk2J ZIk 
(x) � u(x; t) � v0(x) dx+ Xx2EIhH�u(x�; t); u(x+; t)� [v(x)℄ (13)�H�uaD(t); u(x+)� � v(a+) + H�u(x�); ubD(t)� � v(b�)J�h (u; v) = Xx2EIh �(x)[u(x; t)℄ [v(x)℄ + �(a) � u(a+; t) � v(a+) + �(b) � u(b�; t) � v(b�) (14)l�h (v)(t) = ZI g(x; t) � v(x) dx���(a) � v0(a+) � uaD(t) + ��(b) � v0(b�) � ubD(t) (15)+�0�(a) � uaD(t) � v(a+) + �0�(b) � ubD(t) � v(b�):A

ording to value of parameter �, we speak of symmetri
 (� = �1), in
omplete (� = 0)or nonsymmetri
 (� = 1) variants of stabilization of DG method, i.e., we generally 
onsider threevariants of the di�usion form a�h and right-hand side form l�h . Penalty terms are representedby J�h and the penalty parameter fun
tion � : Eh ! IR in (14) and (15) is de�ned in spirit of [4℄as �(x) = CWd(x) with d(x) = 8>>>><>>>>: h1=p12 ; x = a;min�hk=p2k; hk+1=p2k+1� ; x 2 EIh ^ fxg = Ik \ Ik+1;hN=pN 2 ; x = b; (16)where CW > 0 is a suitable 
onstant depending on the used variant of s
heme and on the degreeof polynomial approximation.The problem (11) represents a system of ordinary di�erential equations (ODEs) for uh(t)whi
h has to be dis
retized in time by a suitable method. Sin
e these ODEs belong to the 
lassof sti� problems and due to linearity of 
onve
tive and di�usive terms it is advantageous to usean impli
it approa
h via the ba
kward Euler method.Let 0 = t0 < t1 < : : : < tM = T be a partition of the interval [0; T ℄ and �l � tl+1 � tl,l = 0; 1; : : : ;M�1. We de�ne the approximate solution of problem (1){(3) as fun
tions ulh 2 Shp,ulh � uh(tl); tl 2 [0; T ℄; l = 1; : : : ;M , satisfying the following identity1�l �ul+1h � ulh; vh�+ a�h �ul+1h ; vh�+ bh�ul+1h ; vh� (17)+�0J�h �ul+1h ; vh� = l�h (vh) (tl+1) 8 vh 2 Shp;where u0h is Shp-approximation of u0.The resulting method is pra
ti
ally un
onditionally stable, has a high order of a

ura
ywith respe
t to the spa
e 
oordinates and the �rst order of a

ura
y with respe
t to time. Atea
h time instant tk+1 2 [0; T ℄, we have to solve only one system of linear algebrai
 equationsrepresenting by the dis
rete problem (17).4 Numeri
al experimentsIn this se
tion, we 
onsider three 
onve
tion{di�usion problems in 1D with (pie
ewise) 
onstant
onve
tion 
oeÆ
ient as well as vis
osity. The whole algorithm is implemented in MATLAB and



uses pie
ewise linear, quadrati
 and 
ubi
 approximations on partition of I with 
onstant meshsize h and time step � .The �rst numeri
al example represents the 
ase of 
ontinuous 
oeÆ
ients and steady-statesolution. We set 
(x) = 1:0, �(x) = 0:1, I = (0; 1), T = 1:0 and de�ne the fun
tion g and theinitial and boundary 
onditions in su
h a way that the exa
t solution has the following form:u(x; t) = 1 + 4(1 � e�10t)x(1� x): (18)The mesh size h = 0:01 and the time step � = 0:001. We 
arried out 
omputations by pie
ewise
ubi
 approximations and set � = 0 (in
omplete variant). Figure 1 shows the 
omparison withexa
t solution (18) and development of approximation error eh = kulh � u(�; tl)kI .
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Figure 1: Continuous 
ase (steady): Comparison of exa
t and approximate solution (left),development of dis
retization error (right)In the se
ond experiment, the parameters of 
omputation were the same as in the �rstexample ex
ept for fun
tion g and the initial and boundary 
onditions, whi
h are 
hosen in su
ha way that the exa
t solution has the unsteady form:u(x; t) = 1 + 4x(1 � x)t: (19)One 
an see in Figure 2 almost identi
al behavior of approximate solution in 
omparison withexa
t one.
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Figure 2: Continuous 
ase (unsteady): Comparison of exa
t and approximate solution (left),development of dis
retization error (right)The last experiment is devoted to the 
ase of dis
ontinuous pie
ewise 
onstant 
onve
tionand di�usion 
oeÆ
ients. Without loss of generality, we take
(x) = 8<: 0:1; if x 2 h0; 12i4:0; if x 2 �12 ; 1i and �(x) = 8<: 0:01; if x 2 h0; 12i1:0; if x 2 �12 ; 1i ; (20)g(x) � 0, T = 0:6 and the following initial and boundary 
onditions:u(0; t) = u(1; t) = 1:0; t 2 [0; T ℄ and u(x; 0) = exp ��1:2(1:2 � 6x)2� ; x 2 I: (21)



The obtained satisfa
tory results, illustrating the poten
y of presented method, are depi
ted inFigure 3.
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Figure 3: Dis
ontinuous 
ase: Development of approximate solutions, u0 (initial 
ondition), u1(solution at t = 0:2), u2 (solution at t = 0:4) and u3 (solution at t = 0:6)5 Con
lusionWe have dealt with the numeri
al solution of the linear 
onve
tion-di�usion equation. Wehave presented DG approa
h together with the ba
kward Euler method for spatial and timedis
retization, respe
tively. A set of numeri
al examples produ
ed satisfa
tory results and il-lustrated the poten
y of the resulting s
heme even for dis
ontinuous 
onve
tion 
oeÆ
ient andvis
osity. For the future work, we intend to extend this method to parallel implementation 
on-sisting of domain de
omposition te
hniques and a semi-impli
it treatment of lo
al subproblemswith interfa
e 
onditions.A
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