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Abstract

Among a wide class of numerical methods, the discontinuous Galerkin (DG)
method represents a promising technique for the solution of convection-diffusion
problems. The paper is devoted to the numerical solution of a scalar linear
convection-diffusion equation. For the space discretization DG method is used
and time is discretized with the aid of backward Euler method. The resulting
scheme leads to a system of linear algebraic equations at each time step. Results
of numerical experiments are presented.

1 Introduction

Our aim is to present a sufficiently robust, accurate and efficient numerical method for solution of
convection-diffusion problems. As a model problem, we consider a one-dimensional scalar linear
convection-diffusion equation. The discontinuous Galerkin (DG) methods have become very
popular numerical technique for the solution of such problems. DG space semi-discretization
uses higher order piecewise polynomial discontinuous approximation on arbitrary meshes, for a
survey, see [2], [3]. Among several variants of DG methods we prefer the so-called interior penalty
Galerkin (IPG) discretizations. We deal with three variants of IPG, namely nonsymmetric
(NIPG), symmetric (SIPG) and incomplete interior penalty Galerkin (ITPG) techniques, see [1].
The discretization in time coordinate is performed with the aid of the backward Euler method,
sidetracking the time step restriction well-known from the explicit schemes. Consequently, the
fully discrete problem is represented by the system of algebraic equations. Within this paper
we present the derivation of the whole scheme, from a continuous problem to the discrete one,
and append the set of numerical experiments carried out in MATLAB, for more details see [6].

2 Problem formulation

We consider the following unsteady linear 1D convection—diffusion problem: Let I = (a,b) C IR
be an open bounded interval and T' > 0. We seek a function u : Q7 = I x (0,7) — IR such that

‘(99—1: + (% (ca)u) = a% <V(x) a%“) L9 inQr (1)
u(a,t) = ub(t) and w(b,t) =ul(t), te(0,T) (2)
u(z,0) = uz), zel, (3)

where g : Q7 — IR is the source term, u‘}j,u% : (0,T7) — IR are Dirichlet boundary conditions,
u® : I — IR is the initial condition, ¢(z) : I — IR represents the convective part and v(z) : I — IR
plays a role of diffusive coefficient. Moreover, we assume

g, € R:0< vy <v(z)<wvry Vzel (4)
The initial boundary value problem (1) — (3) is equipped with the initial condition (3) and

the Dirichlet boundary conditions (2) prescribed at both boundary points of domain I but it is
also possible to consider mixed Dirichlet-Neumann boundary conditions.



3 Discretization

Let 7, (h > 0) be a family of the partitions of the closure I = [a, b] of the domain I into N
closed mutually disjoint subintervals I}, = [z _1, zx] with length hy := x — x;_1 and the symbol
J stands for an index set {1,...,N}. Then we call 7, = {Ix, k € J} a triangulation with
spatial step h := maxyc 7(hy) and interval I, an element. By &, we denote the smallest possible
set of all endpoints of all subintervals Iy, i.e. & = {xg =a,z1,...,2Ny-1,25 = b}. Further, we
label by &/ the set of all inner nodes. Obviously, &, = £/ U {a, b}.

DG method allows to treat with different polynomial degrees over elements. Therefore,
we assign a positive integer pi as a local polynomial degree to each I € T,. Then we set the
vector p = {pg, I € Tp}. Over the triangulation 7, we define the finite dimensional space of
discontinuous piecewise polynomial functions

Shp = Snp(L, Tn) = {v;vl1, € P, (Ik) VK € T}, (5)

where P, (Ij) denotes the space of all polynomials of degree < pj on Iy, I}, € T;. Consequently,
the approximate solution of the local problem (1)—(3) is sougth in the space Spp.

For each z € 5;{ there exist two elements Iy, Iy 1 € T, such that Iy NIy = {z}. Let us
denote

_l_ o . — o . o
v(z )—El_1>r51+v(:1:+6) and v(z )—El_1>r51+v(ac €) (6)

the traces of v at inner points of I. Moreover,

()] =v(z") —v(=®), (@)= @E)+v("), (7)

DN | —

denote the jump and mean value of function v at points z € 5,{, respectively. By convention,
we also extend the definition of jump and mean value for endpoints of domain I, i.e.

[v(z0)] = —v(zg), (v(zo)) =v(zf), [w(zn)]=v(zy), (v(EN))=v(zy) (8)

Now, we recall the space semi-discrete DG scheme presented in [7]. The crucial item of
the DG formulation of model problem is the treatment of the convective part. The convective
terms are approximated with the aid of the following numerical flux H(,-) through node x € &,
in the positive direction (i.e. outer normal is equal to one):

{ c(z) -u(z), ife(x) >0

c(x) -u(zt), ife(z) <0’

H(u(x*),u(afr)) = (9)

which is based on the concept of upwinding, see [5]. The choice of u(z~),u(z™) for boundary
points {a,b} is necessary to specify. Here we use:

u(a™) =ud and w(b®) =ul. (10)

A particular attention should be also paid to the treatment of the diffusive terms, in order to re-
place the inter-element continuity, we add some stabilization and penalty terms into formulation
of the discrete problem.

Therefore, we say that u, € C'(0,T; Shp) is the semi-discrete solution of the problem
(1) — (3) if (up(0),vn) = (u’,vp) Yoy € Spp and

<8uaht(t)

,Uh> + bh(uh(t),vh) + a?(uh(t),vh) + I/UJg(uh(t),’Uh) = l;(?(vh) (t) (11)
Yo, € Shp, Vit e (O,T),



where (-, -) denotes the L?(I)-scalar product and

(u, ) Z/} M o)z — Y <1/(:1:) - a“g;’t)> ()] (12)

keJ z€E

+0 > (v(z) ' (2)) [u(=, 1)),

el

by (u, v) = — Z/I c(@) uz,t) V' (2)de + Y H(u(@™,t),u(zt,1) [v(@)] (13)

keJ "k ze€f
—H (uf(t),u(z)) - v(a) + H(u(z),ub(t)) - v(b7)
I (u,v) = Z o(x)[u(z,t)] [v(z)] + o(a) - u(at,t) -v(a™) +o(b) - uld,t)-v(b") (14)

:1:65,{
I () (t) = /Q(I,t) ~v(z) dz — Ow(a) - v'(a") - uh(t) + O (b) - o' (b7) - up (D) (15)
I
+vpo(a) - ul(t) - v(a®) 4+ veo(b) - uby(t) - v(b7).
According to value of parameter O, we speak of symmetric (© = —1), incomplete (6 = 0)

or nonsymmetric (0 = 1) variants of stabilization of DG method, i.e., we generally consider three
variants of the diffusion form af and right-hand side form [{. Penalty terms are represented
by J7 and the penalty parameter function o : £, — IR in (14) and (15) is defined in spirit of [4]
as

hl/p12 , L =a,
Cw ) .
o(x) = m with d(z) = ¢ min (hk/p%,hk_l_l/pﬁﬂ) , T € E,{ ANz} = I N Iy, (16)
hN/pN2 , L= b7

where Cyy > 0 is a suitable constant depending on the used variant of scheme and on the degree
of polynomial approximation.

The problem (11) represents a system of ordinary differential equations (ODESs) for uy,(t)
which has to be discretized in time by a suitable method. Since these ODEs belong to the class
of stiff problems and due to linearity of convective and diffusive terms it is advantageous to use
an implicit approach via the backward Euler method.

Let 0 =ty < t; < ... <ty = T be a partition of the interval [0,7] and 7, = t;41 — t,
1 =0,1,..., M—1. We define the approzimate solution of problem (1)-(3) as functions uﬁl € Shp,
uﬁl ~up(ty), t, €10,T], 1 =1,..., M, satisfying the following identity

jz ( 24-1 — uﬁl,vh) + ay, ( LHL h) + by, (uﬁ{"l,vh) (17)

+voJy, ( Il Uh) =19 (vp) (ti1) Vup € Shp,
where uj) is Spp-approximation of u°.

The resulting method is practically unconditionally stable, has a high order of accuracy
with respect to the space coordinates and the first order of accuracy with respect to time. At
each time instant ¢;x,1 € [0,7], we have to solve only one system of linear algebraic equations
representing by the discrete problem (17).

4 Numerical experiments

In this section, we consider three convection—diffusion problems in 1D with (piecewise) constant
convection coefficient as well as viscosity. The whole algorithm is implemented in MATLAB and



uses piecewise linear, quadratic and cubic approximations on partition of I with constant mesh
size h and time step 7.

The first numerical example represents the case of continuous coefficients and steady-state
solution. We set ¢(z) = 1.0, v(x) = 0.1, I = (0,1), T = 1.0 and define the function g and the
initial and boundary conditions in such a way that the exact solution has the following form:

u(z,t) = 14+4(1 — e 21 — z). (18)

The mesh size h = 0.01 and the time step 7 = 0.001. We carried out computations by piecewise
cubic approximations and set ©® = 0 (incomplete variant). Figure 1 shows the comparison with
exact solution (18) and development of approximation error e;, = ||u} — u(-,#)]s.
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Figure 1: Continuous case (steady): Comparison of exact and approximate solution (left),
development of discretization error (right)

In the second experiment, the parameters of computation were the same as in the first
example except for function g and the initial and boundary conditions, which are chosen in such
a way that the exact solution has the unsteady form:

u(z,t) =14+ 4z(1 — z)t. (19)

One can see in Figure 2 almost identical behavior of approximate solution in comparison with
exact one.
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Figure 2: Continuous case (unsteady): Comparison of exact and approximate solution (left),
development of discretization error (right)

The last experiment is devoted to the case of discontinuous piecewise constant convection
and diffusion coefficients. Without loss of generality, we take
01, ifze [0, %] 0.01, ifze [0, %]
c(z) = and v(zr) = , (20)
40, ifze (%,1] 1.0, ifze ( ,1}

N[

g(z) =0, T = 0.6 and the following initial and boundary conditions:

w(0,4) = u(1,t) = 1.0, t € [0,7] and u(z,0) = exp (~12(12 - 62)?), z € I. (21)



The obtained satisfactory results, illustrating the potency of presented method, are depicted in
Figure 3.

Approximate solutions

Figure 3: Discontinuous case: Development of approximate solutions, ug (initial condition), uq
(solution at ¢ = 0.2), us (solution at ¢ = 0.4) and ug (solution at ¢ = 0.6)

5 Conclusion

We have dealt with the numerical solution of the linear convection-diffusion equation. We
have presented DG approach together with the backward Euler method for spatial and time
discretization, respectively. A set of numerical examples produced satisfactory results and il-
lustrated the potency of the resulting scheme even for discontinuous convection coefficient and
viscosity. For the future work, we intend to extend this method to parallel implementation con-
sisting of domain decomposition techniques and a semi-implicit treatment of local subproblems
with interface conditions.
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