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Department of Mathematics and Didactics of Mathematics, Technical University of Liberec

Abstract

Methods based on wavelets are an established tool in signal and image process-

ing and a promising tool for the numerical solution of operator equations. In

our contribution, we shortly describe all parts of adaptive wavelet methods and

we mainly pay attention to approximate matrix-vector multiplication. Efficient

approximate matrix-vector multiplication is enabled by a fast off-diagonal decay

of entries of the stiffness matrix and a fast decay of the load vector in wavelet co-

ordinates. We present numerical experiments to compare different approximate

matrix-vector multiplication techniques.

1 Introduction

Wavelets have some interesting properties which may provide an advantage over classical meth-
ods such as finite element method. It is well-known fact that representations of smooth functions
and also representations of a wide class of operators are sparse in wavelet coordinates. Further
advantage of wavelet methods is an efficient diagonal preconditioning of stiffness matrices. Then
the condition number of the preconditioned stiffness matrices does not depend on the size of
matrices. And although wavelet stiffness matrices are only quasi sparse, an approximate mul-
tiplication of these matrices with given sparse vectors can be performed in linear complexity.
In [3, 4], automatically adaptive and asymptotically optimal wavelet methods were proposed.
They consists from the following four steps:

1. To transform a variational formulation into the well-conditioned infinite-dimensional l2

problem.

2. To find a convergent iteration process for the l2 problem which works with infinite vectors,
the exact right hand side and exact matrix-vector multiplication.

3. To derive a finite dimensional version of above idealized iteration process with an inex-
act right hand side and approximate matrix-vector multiplication. The algorithm should
provide an approximation of the unknown solution up to a given target accuracy ǫ.

4. To optimize a convergence rate which should match the rate of the best N -term approxi-
mation, and the associated computational work should be proportional to the number of
unknowns.

Efficient approximate matrix-vector multiplication is enabled by a fast off-diagonal decay of
entries of the stiffness matrix and a fast decay of the load vector in wavelet coordinates. In
[3], a numerical routine APPLY was proposed which approximates the exact matrix-vector
product with the desired tolerance ǫ and that has linear computational complexity, up to sorting
operations. An optimized version of this approach was proposed in [6]. Authors optimize
estimated number of matrix-vector multiplication subject to estimated multiplication error. To
better utilize actual decay of matrix entries, a modified approach was proposed in [2]. Vector
entries are not sorted with respect to their size but instead an actual decay of matrix entries is
measured. Consequently in dependence on this decay, the multiplication is performed. Also this
approach is asymptotically optimal. At the end, we present numerical experiments to compare
different approximate matrix-vector multiplication techniques for wavelet bases proposed in [1].
Computations were carried out in MATLAB.



2 Wavelet Bases

First we introduce concepts from the wavelet theory and notations. We consider the domain
Ω ⊂ R

d and the space L2 (Ω) and we denote by 〈·, ·〉 and ‖·‖ the L2-inner product and the
L2-norm, respectively. Let J be at most countable index set and let each index λ ∈ J take the
form λ = (j, k), j, k ∈ Z, where |λ| := j is a scale or a level. Let

l2 (J ) :=

{

v = {vλ}λ∈J : vλ ∈ R and
∑

λ∈J

|vλ|
2 <∞

}

.

A family Ψ := {ψλ, λ ∈ J } ⊂ L2 (Ω) is called a wavelet basis of L2 (Ω), if

i) Ψ is a Riesz basis for L2 (Ω), i.e. the closure of the linear span of Ψ is complete in L2 (Ω)
and there exist constants c, C ∈ (0,∞) such that

c ‖b‖l2(J ) ≤

∥

∥

∥

∥

∥

∑

λ∈J

bλψλ

∥

∥

∥

∥

∥

≤ C ‖b‖l2(J ) , b := {bλ}λ∈J ∈ l2 (J ) . (1)

Constants cψ := sup {c : c satisfies (1)}, Cψ := inf {C : C satisfies (1)} are called Riesz

bounds and cond Ψ = Cψ/cψ is called the condition number of Ψ.

ii) The functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J , where Ωλ is the
support of ψλ, and at a given level j the supports of only finitely many wavelets overlap
in any point x ∈ Ω.

iii) The primal scaling basis has polynomial exactness of order N ∈ N and the dual scaling
basis has polynomial exactness of order Ñ ∈ N. It means that the space generated by an
scaling basis contains the space of all algebraic polynomials on Ω of degree less than or
equal to N (Ñ).

By the Riesz representation theorem, there exists a unique family Ψ̃ =
{

ψ̃λ, λ ∈ J
}

in L2 (Ω)

biorthogonal to Ψ, i.e.
〈

ψi,k, ψ̃j,l

〉

= δi,jδk,l, for all (i, k) , (j, l) ∈ J . This family is also a Riesz

basis for L2 (Ω). The basis Ψ is called a primal wavelet basis, Ψ̃ is called a dual wavelet basis.

3 Wavelet Discretization

Let H be a real Hilbert space with the inner product (·, ·)H and the induced norm ‖·‖H . Let
A : H → H ′ be the selfadjoint and H- elliptic differential operator, i.e.

a (v, w) := (Av,w) . ‖v‖H ‖w‖H and a (v, v) ∼ ‖v‖2H .

Then, there exist positive constants cA and CA such that

cA ‖v‖H ≤ ‖Av‖H′ ≤ CA ‖v‖H , v ∈ H

and the equation Au = f has for any f ∈ H ′ a unique solution. Further we assume that D−1Ψ,
Ψ = {ψλ, λ ∈ I}, is a suitable wavelet (Riesz) basis in the energy space H and I an index set.
Then, there exist positive constants cψ and Cψ such that

cψ ‖v‖2 ≤
∥

∥vTD−1Ψ
∥

∥

H
≤ Cψ ‖v‖2 , v ∈ l2 (I) (2)

and consequently
Au = f ⇔ Au = f ,



where D := diag (ωλ)λ∈I , ωλ =
√

(Aψλ, ψλ), A = D−1 (AΨ,Ψ)D−1 is a biinfinite diagonally
preconditioned stiffness matrix, u = uTD−1Ψ and f = D−1 (f,Ψ). The condition number of
matrix A satisfies

κ (A) ≤
C2
ψCA

c2ψcA
< +∞ (3)

and the same holds (matrix A is positive definite) for all finite sections

AΛ := D−1 (AΨΛ,ΨΛ)D
−1, ΨΛ := {ψλ, λ ∈ Λ} , Λ ⊂ I.

4 Approximate Matrix-Vector Multiplications

In [3], authors exploited an off-diagonal decay of entries of the wavelet stiffness matrices and a
decay of entries of the load vector in wavelet coordinates to design a numerical routine APPLY

which approximates the exact matrix-vector product with the desired tolerance ǫ and that has
linear computational complexity, up to sorting operations. An example of the decay of matrix
entries, we can observe in the Table 1. The idea of APPLY for one dimensional problems is
the following: To truncate A in scale by zeroing ai,j whenever δ(i, j) > k (δ represents the level
difference of two functions in the wavelet expansion) and denote resulting matrix by Ak. At the
same time, vector entries v are sorted with respect to the size of their absolute values. One
obtains vk by retaining 2k biggest coefficients in absolute values of v and setting all other equal
to zero. The maximum value of k is determined to reach a desired accuracy of approximation.
Then one computes an approximation of Av by

w := Akv0 +Ak−1(v1 − v0) + . . .+A0(vk − vk−1) (4)

with the aim to balance both accuracy and computational complexity.

k (3,3) (3,5) (4,4) (4,6)
1 0.19035062 0.39681820 0.24313996 0.20842228
2 0.03148893 0.07742380 0.05924896 0.03254208
3 0.00941647 0.00425257 0.00752139 0.00519580
4 0.00332923 0.00145692 0.00135003 0.00081173
5 0.00117706 0.00051510 0.00023865 0.00014350
6 0.00041615 0.00018211 0.00004219 0.00002537
7 0.00014713 0.00006439 0.00000746 0.00000448
8 0.00005202 0.00002276 0.00000132 0.00000062

Table 1: Computed maxδ(i,j)=k ai,j for several wavelet basis from [1].

In [5], binning and approximate sorting was used to eliminate sorting costs and then an algorithm
with linear complexity was obtained. The idea is following: Reorder the elements of v into the
sets V0, . . . , Vq, where vλ ∈ Vi if and only if

2−i−1 ‖v‖2 < vλ < 2−i ‖v‖2 , 0 ≤ i < q.

And then to generate vectors vk by successively extracting 2k elements from
⋃

i Vi, starting from
V0 and when it is empty continuing with V1 and so forth. Finally the scheme (4) is applied.

An optimized version of the above approach was proposed in [6]. The indices of v are stored in
buckets, depending on the modulus of the corresponding wavelet coefficients in this way:

vλ ∈ vk ⇐⇒ 2−(k+1)/2 ‖v‖∞ < |vλ| ≤ 2−k/2 ‖v‖∞ .



Then ∀v ∈ l2(Λ), we compute the approximate matrix vector product by
∑

k=0Ajkvk, where
jk ∈ N0 are solutions of

∑

k=0

cjk#vk −→ min!,
∑

k=0

ejk ||vk|| ≤ ǫ− δ, (5)

and δ = ||A||

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

v −
∑

k=0

vk

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

≤ ǫ/2, (6)

where Aj and ej are matrices and constants such that ||A−Aj|| ≤ ej and cj are upper bounds
for the number of non-zero entries in each column of Aj. So, they try to optimize number of
arithmetic operations.

To better utilize the actual decay of matrix and vector entries, in [2] a different approach was
designed. We are not searching for 2k biggest vector entries in absolute value but instead we
trace actual decay of matrix and vector entries and then the actual number of entries in vk

depends on these decays. Let us denote SAk := max{|ai,j |, δ(i, j) = k}. Then, we multiply
matrix A0 with vector entries which are greater than given tolerance ǫ, matrix A1 −A0 with
vector entries which are greater than ǫ/SA1, . . . , and matrix Ak −Ak−1 with vector entries
which are greater than ǫ/SAk. In [2], an asymptotic optimality of this multiplication algorithm
was proved.

5 Numerical Experiments

At the end, we present numerical comparison of different approximate matrix-vector multipli-
cation techniques proposed in [3], [6], and in [2]. In numerical experiments, we employ the
stiffness matrix corresponding to the discretization of the one dimensional Poisson equation in
wavelet coordinates using the wavelet basis (4,4) proposed in [1]. As a testing vector, we used
the expansion of function ex(x2 + 4x+ 1) in a dual basis on interval [−1, 1].

CF DSS CDV

ǫ # ‖Au−w‖l2 # ‖Au−w‖l2 # ‖Au−w‖l2
4−1 283 0.01125725 416 0.02180305 555 0.00440601
4−2 466 0.00362875 640 0.00426107 1004 0.00072592
4−3 717 0.00076026 1070 0.00008879 1334 0.00072560
4−4 1100 0.00028663 1755 0.00004870 2748 0.00012386
4−5 2097 0.00004649 3057 0.00002449 5839 0.00002194
4−6 3402 0.00001238 6374 0.00001290 13314 0.00000388
4−7 6684 0.00000296 9135 0.00000625 14103 0.00000388
4−8 13704 0.00000045 17360 0.00000046 31013 0.00000068

Table 2: Errors of matrix-vector multiplications Au−w for (4,4) wavelet.

In the Table 2, the first column represents the required precision ǫ. Columns denoted by CF
contain results obtained by the method proposed in [2], columns denoted by DSS contain results
obtained by approach (5) proposed in [6], and finally columns denoted by CDV contain results
obtained by approach proposed in [3]. In case of method [2], we gradually updated bins until the
desired estimated precision has been reached. In case of method [3], we gradually increased the
controlling parameter k in (4) until the desired estimated precision has been reached. The error
estimates were computed in the similar way as in [6]. Only difference consists in the absence
of restriction (6). Presented results affirm that the approximate matrix-vector multiplication
technique proposed in [2] is more efficient than methods proposed in [3, 6]. In Table 3, we
present results obtained by the method proposed in [2] where the errors were approximated
and not estimated as before. One can observe that the prescribed errors were achieved with
substantially smaller numbers of operations.



CFaprox
ǫ # ‖Au−w‖l2

4−1 58 0.18904028
4−2 209 0.05715800
4−3 418 0.00871160
4−4 652 0.00210840
4−5 861 0.00088876
4−6 1366 0.00024345
4−7 2644 0.00005249
4−8 4513 0.00001456

Table 3: Errors of matrix-vector multiplications Au−w for (4,4) wavelet.

Acknowledgements: This research has been supported by the project ESF ”Constitution and
improvement of a team for demanding technical computations on parallel computers at TU
Liberec” No. CZ.1.07/2.3.00/09.0155.

References
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