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Abstract

Hearing system allows us to localize the sound sources in the open space. Sound
is entering auditory system by ears placed on contralateral sides of the head.
This generally causes that the sounds coming from the different angles in a space
are not exactly the same in both ears. Interaural time and level differences can
occure. These differences allow us to localize the sound in space. Binaural model
allowing to detect interaural level differences between left and right ear was
described in the paper of Ville Pulkki and Toni Hirvonen [5]. Implementation
of the LSO part of model in MATLAB is desribed in this paper.

1 Introduction

The ability to localize sound sources in the space is one of the fundamental properties of the
hearing system. Since we have two ears placed on the contralateral sides of the head, sound
signals entering both ears are not exactly the same. Beside the other factors there are interaural
level differences and interaural time differences between the left and right signal [2]. Interaural
level differences are beleived to be coded in the Lateral Superior Olive (LSO) placed in the
brainstem. There are two LSO each in one hemisphere. Numerous of physiological experiments
revealed that the neural activity in the LSO is higher when the sound signal in the ipsilateral
ear has higher level in comparison to the sound signal in the contralateral ear [6].

An overview of existing LSO models can be found here [4]. This paper describes MATLAB
implementation of the LSO part of the count-comparison binaural model designed by Ville Pulkki
and Toni Hirvonen [5]. The binaural part of the model allowing detection of the interaural time
differences will be added into the model in the future and the model will be used for simulations
of localization of sound sources placed in the horizontal plane.

2 Proposed model

A schematic diagram of the model is presented in Figure 1. The model can be divided in two
parts: monaural processing and binaural processing which simulates roughly the human cochlea
and lateral superior olive (LSO) respectively.

2.1 Monaural processing

The monaural processing simulates the cochlear and the nerve excitation in human ear. The
text bellow describes the processing of only one ear since the second ear channel is processed in
the same way.

2.1.1 Gammatone filter bank

The first stage of monaural processing is the 4th grade gammatone filter bank which divides the
input signal into 115 frequency bands (400 Hz—14 kHz) spaced with 1/4 ERB. This process tries
to simulate the distance-to-frequency transformation in the cochlea.

The general way to compute gammatone filter’s impulse response is defined by equation[3]
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Figure 1: The model diagram

where A is the amplitude, n is number of sample, g is grade of the filter, b is the bandwidth of
the filter (for 4th grade filter it’s equal to 1.019), f. is central frequency of the band and ¢ is
the initial phase of the filter.

Implementation in MATLAB: The implementation of the gammatone filter bank in MAT-
LAB is done by two functions. The first oneis [N cERB]=ERBSpaceII(lowf, highf, density)
where N is scalar representing number of ERB central frequencies, cERB is the vector of the ERB
central frequencies, lowf and highf is the lowest and the highest frequency of the ERB space
respectively and density(0.25 in our case) is the density of the ERB central frequencies across
the ERB band.

The second function [out]=gamma filt(fs,in,cERB,downS) firstly creates gammatone
filters’ coefficients and then these coefficients are used to filter the intput signal by MATLAB
function filter, where out is output matrix where columns represent the frequency bands and
rows the time samples, fs is the sampling frequency, in the input signal, cERB is the vector of
the ERB central frequencies and downS allows us to use downsampling during the processing (1
means no downsampling used).

2.1.2 Half-wave rectification and phase locking

The signal is half-wave rectified and phase locked after the gammatone filterbank block. The
phase locking in the cochlear nucleus is implemented by replacing each half-wave by an impulse
at local maximum with the magnitude which equals to the RMS of the half-wave (Fig. 2).

Implementation in MATLAB: For the half-wave rectification is used MATLAB function
find which gives us the indexes of samples smaller than zero. These samples are replaced by
zero values. Then each frequency band of the half-rectified signal goes through the modified
(the indexes of the local extremes are not ordered by size) function [xmax,imax,xmin,imin] =
extrema(x) [1] where xmax, xmin is the vector with local maximas, minimas values respectively
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Figure 2: The response of the half-wave rectified gammatone filter and half-wave rectified phase
locked gammatone filter with central frequency of 1381 Hz to sinusoidal signal with frequency
3000 Hz

and imax, imin is the vector with indexes of local maximas,minimas respectively. The pair of
local minimas indexes minus zero values between them represent the borders of one half-wave in
processed frequency band from which the RMS value is computed. The impulse with amplitude
equals to the RMS is then placed at the position of half-wave’s local maxima.

2.1.3 Temporal spreading

In reality the impulses in the trapezoid body are spread about 1/10 of cycle period.[5] This
spreading is modeled in adjacent block by convolving the impulses with a Gaussian window w|5]

1/ an

w(n) = e 272" 2)

where n is sample index between N/2 and —N/2. Constant « is set to value of 20. The window
length N depends on frequency f[5]

% fs, f < 800Hz
N =1 0.0024(0.6 + 0.4¢5) fs,  f € (800,2800) Hz (3)
0.0048f, f > 2800H z,

where f, is sampling frequency.

Implementation in MATLAB: In MATLAB we use Eq. 2 and with respect to central
frequency of the band Eq.3 to compute the impulse response of the Gaussian filter. After that
the convolution between input signal and Gaussian windows is made by MATLAB function
out=conv(in,w, ’same’) where out is output vector, in is input signal, w is the impulse
response of the Gaussian filter and parameter >same’ sets the length of the output vector out
equals to input vector in.



2.1.4 Neural conduction delay and gammatone filter bank delay compensation

The compensation of non-constant gammatone filter time delay is numerically computed for
each frequency band individually so that the impulse responses of each frequency band show the
highest peaks at the same time constant. Then the neural conduction delay of 0.4 ms is added
because of the length of neuron to LSO.

Implementation in MATLAB: [delay]l=gammatone_sync(density,fs) function is used
for the delay compensation, where delay is the vector which represents numerical computed
delay of the gammatone filter bands, density is the density of the ERB central frequencies
across the ERB band and fs is sampling frequency. Inside the gammatone_sync function is
generated the same gammatone filter bank as in the monaural process and the unity impulse
is fed to the input. In the final impulse responses are found maximum peaks using the max
function. Desired compensation delays are computed as every channel is moved by adding
zero vector which length is equal to the difference between the maximal delay and delay of the
processed band, to each frequency band besides the frequency band with maximum delay and
to ensure the same vector sizes the ends of the input vectors are cut.

Neural conduction delay is provided by adding zero vector with length equal to 0.4 ms in time
samples.

2.1.5 Averaging adjacent frequency channels and temporal integration
The geometric mean implements a coincidence counting function, or AND-like function which
results in the active output only if a pulse arrives from each frequency channel at the same

time.[5]

Yj =

where y; is the result of averaging of the jth frequency band, W' is a parameter which controls
the width of the frequency window to averaging (in our case it’s set to 3), and x; is the signal
of the ith frequency band from the cochlear model. The output vector is then summed across
the rows.

In the adjacent block the averaged signal from geom. mean is temporally integrated by first-order
IIR filter with time constant of 1ms.

Implementation in MATLAB: The geometric mean is implemented only by rewriting the
Eq. 4 in MATLAB. The temporal integration is then made by designing the filter coefficients
with function [b,al=butter(1,wn, ’low’) where parameter 1 is an order of the filter, wn is
an angular frequency derived from the time constant of the filter and parameter ’low’ sets
the filter the to be a low-pass. The computed filter coefficients are then used in filtering by a
function filter.

2.2 Binaural processing

2.2.1 Level difference computation and limiting

The binaural interaction is implemented by dividing the ipsalateral input by the contralateral
input sample by sample and by taking a logarithm of the result. Multiplication of the logarithm
by a factor 4/3 is chosen to provide unity output when the level difference between the ipsalateral
and the contralateral input is equal to 15 dB. [5]
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ILD = — —_
350910( den> (5)



The output of the calculation is limited between 0-1.

Implementation in MATLAB: We use the Eq. 5. Because of the logarithm in the formula
the output is not defined for zero input values so we have to use ILD(find(isnan(ILD)))=0
command to replace them by zero in the output vector. With similar commands the signal
between 0-1 is limited, ILD(£find (ILD<0)))=0 and ILD(find (ILD>1)))=1 respectively.

2.2.2 Spreading short peaks

In this stage the signal is convolved with a 1 ms Hanning window. This operation smooths short
peaks in the output which can occur, e.q., during signal onsets.

Implementation in MATLAB: The han=hann( round(le-3*fs)) function generate Han-
ning window with the length equal to number of samples in 1 ms. The window is convolved
with input signal. The output is then divided by a direct component of the Hanning window.

2.2.3 Peak following

The last stage is weighted moving average(see Figure 3) which follows the maximum value of the
peaked output. The ipsilateral signal is used as a weight since it was found as most appropriate
in this case.[5]
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Figure 3: The weighted moving average diagram

Implementation in MATLAB: The block is implemented in accordance to scheme (Figure
3). The IIR filters’ coefficients are designed by the [b,al=butter(1,wn, ’low’) function and
then the appropriate signals are filtered by this filter. Small intervention into output signal from
weighted moving average is needed because the denominator signal in division subblock might
be equal to zero which means that the output signal might rise to infinity.This is done by the
same command as in the section 2.2.1, ILD(find (isnan(ILD)))=0.

3 Results

The output of the model was measured by sinusoidal signal for several interchannel level differ-
ences. As can be seen on the Figure 4 the output of the implemented mode is similar to the
Figure 5 from the paper[5].



0.8 B

o
o
T
|

LSO model output
o
S
T
|

02 : : : 8

-21 -18 -15 -12 -9 -6 -3 0 3 6 9 12 15 18 21
ILD [dB]

Figure 4: The dependence of ILD to the interchannel level differences (step 2 dB) for sinusoidal
signal with frequency of 3.8 kHz.
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Figure 5: The dependence of ILD to the interchannel level differences for sinusoidal signal with
frequency of 3.8 kHz, taken from [5]

4 Conclusion

The LSO part of the count-comparison binaural model designed by Ville Pulkki and Toni Hirvo-
nen [5] was implemented in MATLAB. MSO part will be added to the model in the future and
the model will be used for simulations of localization of sound sources placed in the horizontal
plane.
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