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Abstract

This paper deals with the diagnostics and maintenance of a dynamic stochastic system. A
methodology for both (i) fault detection and diagnostics and (ii) efficient maintenance is introduced;
the diagnostics makes use of Bayesian approach to uncertainty, while the maintenance strategy is de-
termined by a dynamic programming algorithm. Methods for finding a suboptimal but nevertheless
usable maintenance strategy with better time complexity are described. Finally, a demonstration of
the methodology on an HVAC (Heating, Ventilation, Air Conditioning) system is provided.

1 Introduction
Efficient operation of systems has been examined by research for a long time. Beside optimal control,
which typically assumes the system is healthy, there is wide field of diagnostics and maintenance.
The purpose of diagnostics is to determine faults which are present in the system. The maintenance
on the other hand makes decision about actions which repair the system, possibly to the original
condition.

There is a variety of diagnostic methods; some of them focus on symptoms of abnormal behavior
detection, others make also some statistical or logical inference about multiple measurements or
symptoms. Some state of the art approaches are provided in Section 3. However, the maintenance is
not present in the literature so much. Sometimes, the operator is assumed to decide only with respect
to results of the diagnostics about probable faults. This approach is denoted as Condition Based
Maintenance [6] where the actual belief on the system state determines the action, directly. There are
- however - already some research efforts to schedule the maintenance in an optimal way [1].

The paper is organized as follows: Section 2 presents basic terms and used terminology, Section 3
enumerates important building blocks and shows the way how they can be put together into one
algorithm. Afterwards, Section 4 introduces some other methods for finding reasonable maintenance
strategies and aiming for lower computation complexity. Section 5 then describes the problem of
obtaining observation and dynamic model and the loss function for a given system. In Section 6 the
presented methods are used for maintenance of a HVAC system discussed in [14]. Results of different
maintenance strategies composed on the same approach to system diagnostics show the importance
of the maintenance question.

2 Basic Terminology and Notations
In this section we introduce basic terms of diagnostics and maintenance. We start with the definitions
of stochastic dynamic system and its dynamic (sometimes called also action) and observation model.
Then history is presented and next, loss function, essential for measuring of maintenance success, is
described. Finally, the concept of faults and the term maintenance strategy are defined.

Definition 1 (System). Let Nx,Nu,Ny, tmax ∈ N, vector x(0) ∈ RNx , conditional probability densities
f (x|y, z), g(x|y, z). Then the ordered triplet (x(0), f , g) is called a (stochastic) dynamic system. The
number tmax is time horizon. Vectors x(1), . . . , x(tmax) ∈ Ux ⊆ RNx are (hidden) system states and their
elements are realizations of random variable specified by probability density f .

For τ ∈ (0, tmax], U(τ−1) = u(τ−1), and X(τ−1) = x(τ−1)

Pr(X(τ) ≤ x) =
∫ x

−∞
f (x′|u(τ−1), x(τ−1))dx′

Vector x(0) is called the initial state. Vectors u(1), . . . , u(tmax) ∈ Uu ⊆ RNu are called system inputs or
actions and are selected by the decision maker. Vectors y(1), ..., ytmax ∈ RNy are called system outputs
and their elements are realizations of random variable specified by probability density g.
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Figure 1: Diagram of a Dynamic System

For τ ∈ (0, tmax], U(τ) = u(τ), and X(τ) = x(τ)

Pr(Y(τ) ≤ y) =
∫ y

−∞
g(y′|u(τ), x(τ))dy′

The density functions f , g are called dynamic model and observation model of the system.

Note: In this paper we will expect the outputs to be conditionally independent of system inputs,

g(y(t)|u(t), x(t)) = g(y(t)|x(t)).

Definition 2 (History). Let (x(0), f , g) is a dynamic system, tmax ∈ N time horizon, t ∈ (0, tmax]. Then
the set of observed outputs and selected inputs (system output and input realizations) from initial
state to time instant t

H(t) = {y(0),u(0), . . . , y(t−1),u(t−1), y(t)}
is called the history (in time t).

The system states cannot be observed directly by the decision maker, he can only compute their
probabilities from the known history of inputs and outputs and dynamic and observation models of
the system. Figure 1 shows the propagation of dynamic system in time.

History in time instant τ is the set of observed outputs and selected inputs from initial time t = 0
to time instant t = τ (without the input u(τ), as the history represents all the information the decision
maker has in time step τ).

Definition 3 (Loss function). Let (x(0), f , g) is a dynamic system, Ux ∈ RNx is a set of possible system
states, Uu ∈ RNu set of possible inputs, τ ∈ (0, tmax]. Then the mapping

Z : Ux × Uu × . . . × Ux × Uu︸                          ︷︷                          ︸
(τ+1)−times

→ [0,∞)

is called the loss function (in time instant τ), its value

Z(x(0), u(0), . . . , x(τ),u(τ))

is the loss to the moment τ.

Loss function evaluates the behaviour and inputs of the system and can for example represent the
cost of the system life. In this case it can be divided into two parts, one evaluating costs of system
states (e.g. malfunctioning motor has greater power consumption, which affects the electricity bill)
and the other reflecting the costs of system inputs (repair of the motor is usually not free of charge).

The goal of system maintenance is to select such inputs, so the expected value of loss to the
moment of time horizon is minimal, i. e. to minimize the expectation of the overall loss function.

When the loss function meets the following condition, it is called additive loss function:

∀t ∈ [0, tmax]∀(x(0), . . . , x(t))∀(u(0), . . . ,u(t)) :

Z(x(0),u(0), . . . , x(t),u(t)) =
t∑
τ=0

z(x(τ),u(τ))

for some function z : Ux × Uu → [0,∞) (named partial loss function).
The system state is not known to the decision maker, but we take the assumption, that the loss

can be computed after the run of the system ends.



System states are vectors from any subset of RNx . However, it can be very useful to divide them
into several subsets and consider only these subsets instead of the states. Imagine that the decision
maker has the task to diagnose and maintain an HVAC system. The system state is a long vector
of temperatures in different parts of the system, air velocities, humidities, thermostat settings and so
on. This might be too much information for reasonable computational complexity of the decision
making. Furthermore, the conclusions from this diagnostics will be sufficient, typically: the decision
maker is provided with the information which part of the system is malfunctioning and why. Let us
now provide a correct definition of faults:

Definition 4. Let Ux ⊆ RNx be the space of all possible system state realizations, F = {Fi ⊂ Ux|i ∈
{0, . . . , n}} finite set of subsets of this space, where F0 is disjunct with all other Fi. Then we call sets
Fi faults and specially F0 faultless state of the system.

In this paper all faults from the set F will be disjunct for the purpose of simplicity in work with
probabilities in Theorems 1 and 2. For systems with non-disjunct faults one can easily make them
disjunct: e.g. in a cooling valve system with possible leaking and stuck faults, the disjunct fault sets
(with faultless state) are all right, leaking and not stuck, not leaking and stuck, leaking and stuck.
The set F contains also a ”zero” fault, i.e. when the system works well.

As was said above, the maintenance deals with the choice of inputs. Natural condition on the
maintenance is that it should reflect, what the decision maker knows (or, to be more precise, thinks)
of the system state. As the system run lasts only to a set time horizon, the input choice can also
depend on time.

Definition 5 (Maintenance Strategy). Let (x(0), f , g) be a dynamic system, tmax time horizon, F set of
faults. The mapping

S : {0, . . . , tmax} × [0, 1]|F | → Uu

is called a maintenance strategy.

As maintenance strategy we understand a set of rules, what input should be chosen at a given time
instant t ∈ [0, tmax] under given probabilities Pr(x(t) ∈ Fi|H(t)). With a given strategy, after system
run the overall loss can be computed. Intuitively, the better strategy, the less should the result be.
However, as outputs and states are realizations of random vectors, with a given strategy each run can
end up with completely different loss. Therefore, optimal strategy is the one minimizing the expected
value of the loss with respect to state and output realizations.

The whole set of probabilities B(t) = {Pr(x(t) ∈ Fi|H(t))|i = 0, . . . , n} will be further called a
(Bayesian) belief1 of system state in time t. It is worth mentioning that B(t) ⊂ [0, 1]|F | and of course

∀t ∈ [0, tmax]
n∑

i=0

Pr(x(t) ∈ Fi|H(t)),

as it is certain, then the system is in some fault (or faultless state).

3 Proposed Methods
This section summarizes several useful tools leading to efficient maintenance and diagnostics. First,
symptoms are mentioned. A symptom expresses that the system seems to be in a faulty, abnormal or
other considerable situation. However, the conclusions can be drawn but in the second step, namely
by filtration which helps to transfer symptoms to posterior probabilities of faults. The third useful
tool is the prediction which provides the possibility to forecast future evolution of the system. Finally,
dynamic programming can be employed to combine all previous tools to find optimal maintenance
schedule.

All of these tools have some assumptions or requirements on data and their processing. Some-
times, these data are not available and they are hard to be simulated. All these requirements are
discussed always at the end of the description of the particular tool.

3.1 Symptoms
Making decisions directly based only on observed variables might be difficult because of their high
dimension. So called curse of dimensionality is a serious issue. It has two alternatives: Optimization
curse of dimensionality means some problems are hard to be solved for higher dimensions, while

1The term belief denotes the probabilities how much particular states are considered.



the statistical curse of dimensionality means higher dimensions require huge amount of training data
[13]. As it will be shown later, both curses of dimensionality in the problem of efficient diagnostics
and maintenance can occur.

Therefore, it is reasonable to extract some informative characteristics from the data. We will call
them symptoms. Symptoms are usually binary, hence we can interpret them as propositions about
recently observed data. Let us provide a formal and generic definition of a symptom:

Definition 6. Let H = {(Y(τ),U(τ))}tτ=1 be the history of given system. Let (Ω,R, P) be the probability
space corresponding to H. Symptom is defined as a given element of sigma algebra R.

This definition means than symptom is a statement about history and there might be several
histories leading to the same symptom. The symptoms can be categorized as follows:

Symptoms based on expert knowledge can be expressed in form of rules about data. Typically
using some thresholds or intervals. These symptoms can be calculated quickly since they do not use
either first-principle or statistical models. An example in the HVAC systems is whether a coil changes
inlet and outlet temperatures. For these systems, it is possible to combine the expert knowledge with
uncertainty using fuzzy logic [7].

Symptoms based on first principles assume some explicit law describing the system or its part
in form of equations and inequalities. If they are not satisfied, the symptom is alerted. In contrast to
the expert rules, these symptoms can work with some unknown parameters that have to be estimated
from historical data. Comprehensive summary is provided in [10].

Univariate statistical symptoms focus on a single observed variable and decides about its ab-
normal behavior, typically based on unusual values of an observed signal (e.g. variance or skewness).
Verron [12] provides advanced univariate signal analysis using Bayesian networks.

Multivariate symptoms discriminate whether two or more observed variables are in their usual
relationship. There are two possible approaches to this task. First, a set of variables is considered
together and a symptom occurs if this bundle exhibits abnormal behavior. Examples are principle
component analysis [2] or auto-associative neural networks [5], often used for sensor fault detection.

Another approach uses statistical models with multiple inputs for one variable. The symptom then
is defined as situation when the variable has significantly different value than expected, given other
state variables. As an example, we can mention [14] where 11 performance indices were modeled as
polynomials of some observable variables.

S i = I(Ŷ j,lower(H) ≥ Y j ≥ Ŷ j,upper(H))

The availability and applicability of symptoms may vary from system to system. Above mentioned
summary provides the decision maker with wide range of available tools.

3.2 Observation Model and Bayesian Filtration
The connection between observed system output (or symptoms derived from it) and its real state is
the so-called observation model (see Definition 1). With a known observation model of the system,
we can at each time step update probabilities of each fault and faultless state. The tool to do so is
called the Bayesian filtration:

Theorem 1 (Bayesian Filtration). Let (x(0), f , g) be a dynamic system, tmax ∈ N time horizon, F =
{Fi ⊂ RNx |i ∈ {0, . . . , n}} set of fault states, S = {S j ⊂ Uy| j ∈ J} finite set of possible symptoms,
t ∈ (0, tmax], H(t) = history, where y(t) ∈ Sk, k ∈ J . Then

Pr(x(t) ∈ Fi|H(t)) =
Pr(y(t) ∈ Sk |x(t) ∈ Fi)Pr(x(t) ∈ Fi|H(t) \ y(t))∫

Ux
Pr(y(t) ∈ Sk |x(t) ∈ Fi)Pr(x(t) ∈ Fi|H(t) \ y(t))dx

(1)

Proof. [8] We will use the fact that

H(t) =
(
H(t) \ y(t)

)
∪ y(t).

This implies
Pr(x(t) ∈ Fi|H(t)) = Pr(x(t) ∈ Fi|H(t) \ y(t), y(t)),

and the theorem results from the Bayes rule. �



Bayesian filtration updates our belief on system state from belief based on history H(τ − 1) to
belief based on history H(τ). The belief in time instant τ = 0 is called the prior belief. In this
version of Bayesian Filtration theorem, we first need to derive probabilities Pr(y ∈ Si|x ∈ F j) from
the observation model g(y|x). This, however, is not a problem, because

Pr(y ∈ Si|x ∈ F j) =
∫

S j

p(y|x ∈ F j)dy,

p(y|x ∈ F j) =
∫

F j

g(y|x)dx,

leading to

Pr(y ∈ Si|x ∈ F j) =
∫

Si

∫
F j

g(y|x)dxdy.

Thus the denominator in equation 1 can be written as a

n∑
j=0

Pr(y(t) ∈ Sk |x(t) ∈ F j)Pr(x(t) ∈ F j|H(t) \ y(t)).

The problem consists in obtaining the observation model itself – since we cannot directly observe
the system states, we also do not have the precise probability density function g(y|x).

One way of obtaining the observation model is to model the whole system and do a simulation of
its faultless run and then gradually introduce to the system all faults. For each fault Fi symptoms are
observed and from the dataset the number of observed output in symptom S j divided by the number
of all observed outputs then represents the value of a conditional probability Pr(y ∈ S j|x ∈ Fi), and
therefore can be taken as a part of the system observation model used in Theorem 1. This approach
is used for example in [14].

Another way, how to get an observation model for a given system, is to extract the knowledge
from experts. It is also possible to combine different approaches, e.g. use expert knowledge for the
prior estimate of the observation model and then refine it gradually by observed data, using Bayesian
approach [8].

3.3 Dynamic Model and Prediction
The dynamic model of the system describes, how chosen inputs influence next system state. With
a known dynamic model, we can predict system state in next time step, given current belief and
selected input. This can be done via the so-called Bayesian prediction:

Theorem 2 (Bayesian Prediction). Let (x(0), f , g) be a dynamic system, tmax ∈ N time horizon, F =
{Fi ⊂ |i ∈ {0, . . . , n}} set of faults, t ∈ (0, tmax], H(t) history, where y(t) ∈ Sk, k ∈ J . Then

Pr(x(t+1) ∈ Fi|H(t),u(t)) =
n∑

j=0

Pr(x(t+1) ∈ Fi|u(t), x(t) ∈ F j)Pr(x(t) ∈ F j|H(t)) (2)

Proof. The theorem results directly from law of total probability. �

3.4 Dynamic Programming
With a dynamic system, given loss function and known dynamic and observation model, we can at
each time step compute the best possible input in order to minimize the overall expected loss and so
make an optimal maintenance strategy. The tool to do so is called the dynamic programming:

Theorem 3 (Dynamic Programming). Let (x(0), f , g) be a dynamic system, tmax ∈ N time horizon, z
partial loss function. Then the optimal strategy R can be computed this way: for each time instant τ
and each belief B(τ) the input minimizing the Equation (3) is chosen:

ν(B(τ), τ) = min
u(τ)∈Uu

E[z(x(τ),u(τ)) + ν(B(τ + 1), τ + 1|u(τ))]. (3)

Presented recursion is conducted from time horizon τ = tmax to τ = 0, where

ν(B(tmax + 1), tmax) ≡ 0

for all beliefs B(tmax + 1).



Proof. Proof will be conducted by mathematical induction from time horizon t = tmax to t = 0. Let
Rt denote strategy from time instant t to the time horizon. Let first t = tmax and Rt be the strategy
constructed with the use of this theorem. Let Rt be not optimal strategy. This implies existence of
strategy R̃t such that for one ore more beliefs B(t) applies the inequality∑

x
z(x,R(B(t), tmax)) · Pr(x) >

∑
x

z(x, R̃(B(t), tmax)) · Pr(x),

where the probabilities Pr(x) are the subjective probabilities from belief B(t). However, this is con-
tradiction with the Equation 3, because clearly the minimizing input was not put into the strategy.

Let Rt be the optimal strategy from time t to tmax constructed with the use of this theorem. Let
Rt−1 be the extension to time instant t−1, also corresponding to this theorem, and let it be not optimal.
Analogically it can be proven, that this results into contradiction with the Equation 3, so that such
strategy must be optimal. �

The function ν from the Theorem 3 is called the Bellman function or the optimal loss-to-go and
it has the meaning of optimal expected loss from given situation (time instant and belief) to the time
horizon. With the use of Theorems 1, 2 and 3 we are now able to present Algorithm 1, a tool for
calculating the optimal maintenance strategy for a given system.

The Algorithm 1 follows directly the Theorem 3: for each time step (computing backwards from
time horizon) and belief minimal loss from that situation to time horizon is found and saved to the
optimal strategy with corresponding input. The transitions from one situation to other are computed
with the help of Bayesian filtration and prediction (Theorems 1 and 2).

A Bayesian belief B(t) in general has infinite amount of values, which would lead to Algorithm 1
being not resultative. Therefore, a discretization of Belief is required, using a given discretization
step (e.g. 0.01), so the probabilities in B(t) can have only finite amount of values. The number of
symptoms and faults is also finite (see Definitions 4,6) and we assume that the number of possible
inputs (actions) is also finite. Therefore in each time instant we compute and compare finite amount
of numbers and the algorithm is resultative.

The application of the discretization leads to moderate loss of information, but there are two
justification for it: first, the measurements of observed variables in system (temperatures, velocities,
etc.) and therefore the system outputs are always performed with finite accuracy; and second, too
close system states have almost identical nature and are not distinguishable for the loss function in
real applications.

Dynamic programming is an elegant way to find the optimal maintenance strategy with linear
complexity with respect to the time horizon. The complexity of Algorithm 1 with respect to belief
discretization and number of system faults |F | is far from linear, though: as shown in Figure 2, the
complexity with respect to |F | is exponential (O(expF )) for any given discretization step (in F̃igure
2 for discretization step 0.1), because the number of possible beliefs B(t) in any given time instant
is (roughly) exponentially growing and the algorithm must examine every possible B(t) for all time
instants from time horizon to beginning.

Finally the complexity with respect to belief discretization is O(p|F |) for any given number of
possible faults |F |, where p is the number of points the interval [0, 1] is divided into, so e.g. for dis-
cretization step 0.1 p = 11 as points are 0, 0.1, 0.2, . . . , 0.9, 1. This means that the complexity linked
with computation accuracy is polynomial – however, for nontrivial systems with many possible faults
the degree is uncomfortably high.

The problem of exponential complexity with respect to |F | and connected high degree polynomial
complexity with respect to belief discretization is called the curse of dimensionality. The first two
ways to fight it are:

• Keeping as few faults as possible – if some faults possible to happen in the system are e.g. of
the same nature, have same consequences (and therefore costs) and are repaired by same or
very close inputs, it might be helpful to agregate them, so that the number of possible faults |F |
drops by 1,

• do the discretization as raw as possible – the discretization step should correspond to the sensor
with smallest accuracy in order to prevent computing belief situations in the strategy, which
cannot occur due to the output measurements inaccuracy.

However, the two methods presented above have serious limits as even the reduced number of
faults can be high in more complex systems. In such situations it is appropriate to some of the
methods presented in Section 4.



Algorithm 1 Optimal maintenance - strategy calculation
function CalculateStrategies

for τ = tmax, tmax − 1, . . . , 0 do
for all B(t) do

Loss← +∞
for all u do

if (Bellman(B(t),u) < Loss) then
Loss← Bellman( fx,u,t)
Input← u

end if
end for
Strategy← save [(t,B(t))→(Input,Loss)]

end for
end for

return Strategy
end function

function Bellman(B(t),u, t)
Loss← Ez(x, u) = z(x,u) · B(t)
B′(t + 1)← Prediction(B(t),u)
Loss← Loss +

∑|S|
j=0 Pr(y(t) ∈ S j) · Strategy(t + 1, Filtration(B′(t + 1), S j)).getLoss

return Loss
end function

function Filtration(B(t) = {Pr(x(t) ∈ Fi|H(t))|i = 0, . . . , n}, S j)
for i = 0, . . . , n do

Pr(x(t) ∈ Fi|H(t))← Pr(y(t)∈S j)·Pr(x(t)∈Fi)∑|S|
k=0 Pr(y(t)∈S j |x(t)∈Fk)·Pr(x(t)∈Fk)

B′(t)← save Pr(x(t) ∈ Fi|H(t))
end for

return B′(t)
end function

function Prediction(B(t), u)
for i = 0, . . . , n do

Pr(x(t+1) ∈ Fi|H(t),u(t))← ∑n
j=0 Pr(x(t+1) ∈ Fi|u(t), x(t) ∈ F j)Pr(x(t) ∈ F j|H(t))

B′(t + 1)← save Pr(x(t+1) ∈ Fi|H(t), u(t))
end for

return B′(t + 1)
end function
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The main advantage of Algorithm 1 is that it has to be run only once, before the actual mainte-
nance of the system. Once the optimal strategy is computed and saved, it is then only needed in each
time step of the maintenance to compute new belief from sensors measurements (system outputs)
and then find the optimal input in prepared strategy.

There is also the question of the shape of optimal strategy. As it turns out, the shapes of optimal
maintenance strategies look very alike for different systems not only with different dynamic and
observation models, but also with different dimensions (number of possible faults). From closer
examination of computed optimal strategies could therefore evolve a different method for finding
them based on setting up some parameters of common shape. Such method is outlined in Section 4.

With maintenance calculated, the simulation of a system run looks like presented in Algortihm 2.

Algorithm 2 Optimal maintenance - application of the strategy
loss = 0
belief← initial belief
for τ = 0, 1, . . . , tmax do

belief← Filtration(belief,output)
u(τ) ← Strategy(τ, belief)
belief← Prediction(belief, input)
loss← loss + z(x(τ), u(τ))

end for

4 Approximate Methods
The presented algorithm of dynamic programming offers optimal solutions to the system mainte-
nance. However, for non-trivial systems the introduced curse of dimensionality is a serious issue and
the basic algorithm begins to be computationally intractable. In this section we describe some less
time consuming methods for finding close to optimal maintenance strategies.

4.1 Saving Filtration and Prediction Results
This approach tries to reduce the number of calling the functions of filtration and predictions in
Algorithm 1, which is:

number of calling filtration = tmax · |Uu| · |S| · number of possible beliefs,

number of calling prediction = tmax · |Uu| · number of possible beliefs.



These procedures can be quite time consuming. This method computes the filtration and predic-
tion for each possible belief and each possible output and input in advance and saves the results into
structure with constant time accessibility. The numbers of calling these functions drops to

number of calling filtration = |S| · number of possible beliefs,

number of calling prediction = Uu| · number of possible beliefs.

Only with this improvement, more than 99 % acceleration2 of the dynamic programming algo-
rithm were observed for some systems, resulting in same or very close strategies (different in less
than 3 % of strategy inputs). The slight difference of values in strategies computed with the use of
this method results from more rounding in this approach, as each resulting belief is rounded to a
”possible” one (possible by discretization used).

4.2 Systems with Observable States
For systems with directly observable states, the Algorithm 1 is much simpler, as the strategy has to be
computed for each combination of time instant and state, not time instant and belief. For example in
system with four possible states, time horizon 1000 and belief discretization step 0,1 it is a difference
between computing 286 000 and 4 000 values.

In a system with hidden states, the decision maker can still make use of the maintenance strategy
computed for a system with the same dynamic model and loss function, but with observable states.
Experiments were made with two approaches:

• The decision makers select input from the strategy corresponding to the state with highest
probability in actual belief,

• they select input from the strategy corresponding to the state with highest value of Bellman
function multiplied by the state probability in actual belief (mean of the Bellman function).

The first approach seems to bring better results, as the second one is too cautious of states with
high possible losses. However, both approaches are good enough only for systems with strong diag-
nostics, that changes the actual belief quickly and with very few errors.

The observability of the states can be emulated by some smooth filtration like Kalman or particle
filters [3]. Having the filtered estimate, faults can be evaluated by their definition straightforward.

4.3 Constant Border Strategies
All optimal strategies computed by Algorithm 1 for systems with functioning diagnostics, i.e. when
precise observation and dynamics models are available, and inputs corresponding to faults (the sys-
tem had the same number of inputs and states, each input repairing one state and one input having
the meaning of no repair) had a common shape: constant border between inputs from beginning to
a breakpoint close to time horizon, where the repairs became uneconomic and were deprecated. For
a system without functioning diagnostics (the observation model was uniformly distributed) the op-
timal strategy had a shape of periodical repairs, as one would intuitively guess. See the Figures 3
and 4 for examples of optimal strategies for system with two states and two inputs. On x-axis is the
time instant (with the time horizon of 100), on y-axis is the probability of being in state F0 (faultless
state). The blue area represents Belief values in time of the strategy suggesting repair of the system.

The common shape of optimal strategies implies another method for system maintenance: simply
set the constant border between inputs and find the breakpoint tz. Finding the breakpoint is very
simple and results from the partial loss function. Under the condition, that such functions zx, zu exist,
so that

z(x,u) = zx(x) + zu(u),

the breakpoint tz for state x and corresponding repair input u is the minimal natural number fulfilling
the inequality

(tmax − tz + 1) · zx(x) > zu(u),

E.g. for a state with corresponding loss 1 and its repair with the loss of 10, the last 10 time instants it
is uneconomical to repair the system even if the decision maker is absolutely sure, that the system is
in the faulty state.

The setup of the constant border from beginning to the computed breakpoint has not been fully
explored yet. Observations of optimal strategies from Algorithm 1 suggest that it does not depend on

2Used case study for the results is presented in Section 6
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Figure 3: Maintenance Strategy for System with Functioning Diagnostics
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Figure 4: Maintenance Strategy for System without Diagnostics

time horizon, if it is high enough and finite. It depends on the loss function (the more expensive repair
of a fault, the more must the decision maker be sure about the fault to repair the system) and dynamic
and observation model of the system. The question of exact dependencies of these quantities remains
open at this time.

However, simple policy for system with inputs corresponding to states was tested on few systems
with pleasing results. The border for input ui (repair of the fault Fi) was set as

1 − zx(x ∈ Fi)
zu(ui)

,

leading to the average loss only 0.72 % higher for a system with four states and time horizon of 100,
than optimal strategy computed for the same system with the use of Algorithm 1 and discretization
step of 0.05.

4.4 Approximate Dynamic Programming
All methods so far had an off-line character, as the maintenance strategies were set up before the
run of the system. The method of approximate dynamic programming is an on-line approach: the
maintenance strategy is computed on-line, constantly adjusted and revisited during it.

Approximate dynamic programming3 is presented in Algorithm 3. Unlike the Algorithm 1, it
does not find the strategy as a mapping of time instant and belief to inputs – instead its result is
a fixed sequence of inputs. The application of the ADP in an on-line system maintenance run is
presented in Algorithm 4. The fx denotes the belief of a system state B(t).

3For comprehensive information on ADP see [9].



Algorithm 3 Approximate Dynamic Programming

function ADP(x(0)
1 , fx, ν(0)

0 ,. . .,ν(tmax)
0 , f , tmax, z, N)

for n = 1, . . . ,N do
for t = 0 : tmax do

u(t)
n ← arg min

u
[
∑
x′

z(x′,u) · fx(x′) +

+
∑

y
ν(t+1)

n (fil(pred( fx,u), y)) ·
∑
x′

g(y, x′) · pred( fx,u)(x′))]

ν ← min
u

[
∑
x′

z(x′, u) · fx(x′) +

+
∑

y
ν(t+1)

n (fil(pred( fx, u), y)) ·
∑
x′

g(y, x′) · pred( fx, u)(x′))]

ν(t)n ( fx) =
 ν fx = f (t)

x
ν(t)n−1 fx , f (t)

x

x(t+1)
n ← random( f (·,u(t)

n , x
(t)
n ))

y(t+1)
n ← random(g(·, x(t+1)

n ))
fx ← fil(pred( fx, u(t)

n ), y(t+1)
n )

end for
end for

return u(0)
N ,u

(1)
N , . . . , u

(tmax)
N

end function

The ADP function starts from a given belief of the system and in each step finds an input mini-
mizing the Bellman function, like the normal dynamic programming, but there are some differences:
the Bellman function is not recursively and exactly computed. Instead, the ADP has the prior esti-
mate of Bellman function values as its input. The ADP also proceeds in time from beginning to the
time horizon. The main idea is a Monte Carlo simulation of the system run from the given point. At
each time instant the algorithm makes a decision and updates the Bellman function. With more and
more system run simulations, the estimate of the Bellman function is becoming more accurate and
the ADP algorithm makes more optimal decisions (system inputs). A number of iterations can be
decreased by good prior estimate. However, it is a non-trivial task as the estimate should not only be
accurate, but also reasonably fast to make the difference.

The actual system run goes like this: At first, the input sequence is computed with the Algorithm 3
and prior belief. Then the system begins to run, inputs are sequentially chosen from the sequence
and once in a while the sequence is computed again, with actual belief and lower time horizon. This
can be interpreted as strategy revision. The ADP on-line maintenance unsurprisingly brings better
results with more iterations N and more frequent strategy revisions (low interval k).

5 Reference Problem
With known system models and loss function, its maintenance is a question of optimal trade off
between computational complexity and requirements on optimality of the strategy. In principle,
however, it is easily manageable with tools presented in previous sections. The decision makers
can choose to use the dynamic programming for finding optimal solutions. When the system is
too complex and the curse of dimensionality becomes a serious issue, they have at least four other
methods to deal with the maintenance task.

The main problem is therefore an accurate estimate of the observation model, the dynamic model,
and the loss function. If the system has hidden states, it is clear that all the decision maker can hope
for are estimates close to reality enough to bring satisfactory results. The first step in order to obtain
system models is to find all possible states (and inputs and outputs) and derive them into faults, e.g.
by fault tree diagnostics [4].



Algorithm 4 On-line System Maintenance Using ADP
function SimulateADP(tmax, f , z,N, k, x(0))

u(0),u(1), . . . , u(tmax) ← ADP(x(0), ν(t)0 , f , tmax, z, N)
Z ← z(x(0), u(0))
for t = 1, . . . , tmax do

x(t) ← random( f (·,u(t−1)), x(t−1))
if t mod k = 0 then

u(t), . . . , u(tmax) ← ADP(x(t), ν(t)0 , f , tmax − t + 1, z,N)
end if
Z ← Z + z(x(t),u(t))

end for
return Z
end function

With known system states, inputs and outputs, the next step is to find the models. This can be
done by building physical model of the system, by statistical estimates from observed data in the
original system or by using expert knowledge. These approaches can be combined, e.g. expert
knowledge is used to bring an prior estimate or just some information about models, including types
of considered distribution. The estimate is then specified with modeling of the physical processes in
the system and further continually refined by observed data from its run.

Another issue is formulation of the loss function. For maintenance, its values have mostly the
meaning of financial cost of state and system input, and the partial loss function can be therefore split
into two parts:

z(x,u) = zx(x) + zu(u),

where zx denotes the costs of states and zu the costs of inputs. The part zu can be formulated rather
easily, as the cost of a repair consists of the cost of components needed, work of the servicemen and
sometimes also the loss resulting from stopping the system for the repair. The part zx, however, is for
some systems hardly computed. In HVAC systems for commercial buildings the cost of a fault state
results mainly from discomfort of the building occupants: e.g. in an office, fault in HVAC system
causes decrease of indoor air quality and the thermal control. This results into the staff working less
efficiently, less office hours and probably getting ill more often. These changes are real, but very
small, and to compute the resulting cost of the HVAC fault state needs a large quantity of detailed
data. Faults of air conditioning systems in manufacturing are more simple to compute, as they can
result into stopping the work processes and even throwing away a quantity of produced products (e.g.
in pharmaceutical industry).

As for models of the system, the expert knowledge is usable for formulation of the loss function,
too. Possible procedure is to compare the costs of inputs and states pairwise (similarly to setting the
weights of criteria in the AHP method [11]) and define the loss functions zx, zu from the ratios, as for
the maintenance task the ratios between losses for states and inputs are important, not their absolute
values.

6 Maintenance of an HVAC System
This section demonstrates tools and concepts described in previous sections on diagnostics and main-
tenance of a HVAC system. First, the system itself and construction of its models and loss function
are introduced. Then optimal maintenance strategy is computed with the use of Algorithm 1 and its
results are compared with other methods presented in this paper.

The discussed system is taken over from [14] and is a HVAC system of a commercial building
in Kowloon, Hong Kong. It consists of five parts: cooling towers, chillers, secondary pumps before
heat exchangers, heat exchangers, secondary pumps after heat exchangers. Diagram of the system is
in Figure 5.

6.1 Models and Loss Function
In [14] the authors diagnose the system by taking these steps:



Figure 5: Diagram of Discussed HVAC System (taken from [14])

1. Model the system in the TRNSYS4 (stands for Transient System Simulation Tool) environment

2. Define a number of performance indices (PI’s) based on measurable values, e.g power con-
sumptions or temperature effectiveness in the cooling system

3. By model simulation of healthy runs and runs with gradually introduced faults of two degrees
of seriousness of the system they get a dataset of PI values under different situations

4. With this dataset they are able to predict PI values by quadratic regression

5. When the actual system is running, they measure the difference between predicted PI values
and values computed from measured outputs. High difference suggests a fault in corresponding
subsystem

Let us now formulate the system according to Definition 1. For the sake of simplicity, only
one subsystems, chillers (more precisely its heat transfer), will be taken into account. However,
presented methods are general and can be used for the whole system. First, space of possible states,
inputs and outputs must be determined. Heat transfer in chiller system can be in a faultless state,
or can suffer from condenser and evaporator fouling. Two faults are recognized: a mild and serious
fault. Therefore, the set F consists of three elements, F0 denoting the faultless state, F1 mild and F2
the serious condenser and evaporator fouling.

Outputs are discrete values describing whether a PI residual is high enough to warn about a fault.
The two PI’s corresponding to heat transfer in chiller system are coefficient of performance and power
consumption, so system output can be defined as a discrete vector with dimension of two.

In [14] only diagnostics is discussed. What to do with the information about faults present in
the system is completely up to the decision maker. Therefore, the dynamic model and loss function
formulation do not emerge from any dataset. However, they will be built with an inner logic instead
of being just a set of random numbers. We define system input as a discrete vector with dimension
of one, simply denoting whether the decision maker decides to repair the chiller system or not.

Detection ratios in Table 1 (also from [14]) were computed as number of warnings due to high
residual between predicted and measured values of according PI divided by the number of all mea-
surements under different system states (Lvl 1 signifies mild fault of a subsystem, while Lvl 2 denotes
a more serious fault). This means that the values in Table 1 are conditional probabilities (in %) of
outputs under system state – an observation model from Definition 1. The only numbers missing are
probabilities of outputs under the faultless state, therefore they are sadly to be defined artificially.

The loss function Z maps system states and inputs to a non-negative real value. As it has the
meaning of financial cost, we can define only partial loss function z and even divide it into two
functions zx, zu for cost of states only and inputs only. As the input can have the values of ”repair”
and ”do not repair”. Under natural conditions doing nothing is free of cost; the cost of repair will be
set to 10, so (denoting the repair as 1 and not repairing the system as 0):

zu(u = 0) = 0,

4http://www.trnsys.com/



Detection ratios (%)

Secondary Secondary
Cooling tower Chiller system Chiller system pump system Heat exchanger pump system

system (motor) (heat transfer) before HX sytem after HX
PI residual Lvl 1 Lvl 2 Lvl 1 Lvl 2 Lvl 1 Lvl 2 Lvl 1 Lvl 2 Lvl 1 Lvl 2 Lvl 1 Lvl 2
εT CT 30 100 8 20,67 12,67 20,67 18,67 18,79 12,67 12,67 18,67 12,67

Tapproach CT 32 100 8 18,67 11,33 17,33 16 16,11 10 9,33 14 8,67
WCT 100 100 14 18 12,67 17,33 17,33 16,78 20,67 20,67 16,67 16,67
COP 0 40 16,67 100 36 70,67 0 0 0 0 0 0

Wchiller 61,33 84 78,67 100 80,67 89,33 12 12,08 30 31,33 19,33 32
ηHX 0 0 0 0 0 0 0 0 0 100 0 0

UAHX 4 5,33 4 2,67 0,67 3,33 0,67 3,36 100 100 9,33 23,33
Tout afHX 0 0 0 0 0 0 0 0 0 100 0 0
Tout bfHX 0 0 0 0 0 0 0 0 0,67 100 0 8,11

Wpump bfHX 0 8 8,67 7,33 8,67 8,67 100 100 2,67 0 17,33 18
Wpump afHX 0 0 0 0 0 0 0 0 0 0 35,33 99,33

Table 1: Detection Ratios for PI’s for Faults in Different Subsystems

zu(u = 1) = 10.

The system state can be in three sets F0 for faultless state, F1 for mild fault and F2 for a serious
one. A natural condition for this setting is

zx(x ∈ F0) ≤ zx(x ∈ F1) ≤ zx(x ∈ F2).

Let us for example define these costs as 0, 1 and 3. It is worth noting that absolute values are not
essential for the loss function, as loss functions z and c · z lead to the same strategies for all c > 0. In
other words, the ratios between values of loss function are important, not the absolute values.

The only missing piece for solving the maintenance task is the dynamic model of the system. We
formulated it under three conditions:

• The state of the system cannot improve without repair

• The probability of mild fault is higher than probability of a serious one

• The system can break down right after repaired

We set the probability of inception a mild fault as 0.02, the probability of a serious one as 0.01
and the probability of changing the fault from mild to serious as 0.2. Along with the conditions
mentioned above it is sufficient information for definition of the whole dynamic model.

6.2 Results of Different Maintenance Strategies
All tools presented in this paper were implemented in the Matlab environment and are available on
http://kmlinux.fjfi.cvut.cz/˜berkaja3/dynsys/. Let us first show the definition of system
models and loss function discussed in previous subsection.

The output is a binary vector with dimension of two, i.e. there are four alternatives of its values
(four possible symptoms). System state is a ternary (faultless state, mild fault, serious fault) vector
with dimension of one. The observation model can be therefore written as a 4 × 3 matrix O, where

(O)i j = Pr(y ∈ Si|x ∈ F j).

Let us artificially define the probabilities of sensors pointing at a system fault under faultless state
as 0.3 for both PI’s. Under the condition of independent PI’s (which seems reasonable as each PI is
computed from different measurements) the observation model O can be in Matlab defined as:
O = [0.49 0.1216 0.0319;0.21 0.5184 0.2581;...

0.21 0.0684 0.0781;0.09 0.2916 0.6319];

As in each time step the output must have some realization, one can easily check the validity of
the observation model by sum(O). If O is a valid representation of an observation model, the result
must be a vector of ones only.

Similarly, dynamic model for this system can be written as a 3 × 2 × 3 matrix, as system state is
ternary and input is binary vector with dimension of one. From the discussion in above emerges this
definition in Matlab:
D = [0.97 0.02 0.01 0.97 0.02 0.01 0 0.8...

0.2 0.97 0.02 0.01 0 0 1 0.97 0.02 0.01];



D = reshape(D,3,2,3)

The loss function will be 3 × 2 matrix defined as follows:
L = [0 5; 1 6; 2 7];

We will find strategies for maintenance of this system for 100 time instants, therefore we define
time horizon as
tmax = 100;5

The last thing to do before running the algorithms described in Sections 3.4 and 4 is to do the
discretization of probability. The belief for this particular system is a vector with length of three
(values are belief of system being in a faultless state, of having a mild fault and of having a serious
fault6). A function to get all the distinguishable beliefs was written also it Matlab, its input being the
dimension of the system (number of all possible faults and faultless state) and the step (should be
number which divides 1). The smaller step the more beliefs are distinguished and the more precise
is the computation. For this example we set the step as 0.1 and get matrix of all beliefs by
bels = getBeliefs(3, 0.1);

To find the optimal strategy using the Algorithm 1 we run the findStrategy function:
[str strLoss]= findStrategy(tmax, O, D, L, bels);

In strLoss are saved the values of the Bellman function, i.e. the optimal losses-to-go from given
time step and belief.

The elapsed time was about 49 seconds (in Linux Ubuntu 9.10 on a machine with Intel Core2
T72002.00 GHz processor with 1 GB RAM. All computations were done at this machine unless
stated otherwise). If we try to use the method described in Subsection 4.1, we must compute results
of filtration and prediction in advance and then use them in the main algorithm:
OM = filtrationMat(O, bels);

DM = predictionMat(D, bels);

strM = findStrategyMat(tmax, O, OM, DM, L, bels);

The elapsed time of findStrategyMat was 0.3 seconds, the two preparatory functions took
about 0.5 seconds together. That means finding the maintenance strategy in less than 1 second for the
same system. The str is an optimal strategy (with respect to the probability discretization). If we
look closely on the strM, we find out, that it differs in 467 situations7, i.e. in about 7 %. is exactly
the same. For discretization step 0.01 the strategies differ in 0.2 % – the more precise computation,
the less are the rounding in findStrategyMat ”hurt” the optimality of strategy.

0
20

40
60

80
100

0

20

40

60

80
1

1.2

1.4

1.6

1.8

2

timepdf number

ac
tio

n

Figure 6: Optimal Maintenance Strategy for HVAC System

The average loss for a given system and strategy can be computed by simulations of system
runs and averaging the achieved overall losses. As the expected loss is computed step-by-step in
the dynamic programming algorithm, we can avoid this time consuming process and just look at the
expected loss for the first time step. If the actual system models are equal to the models used in the
Algorithm 1, the average loss from simulation converges to this value.

5In Matlab indexes run from 1, not from 0 as in theory introduced in Section 2.
6It is obvious that the sum of belief in each time step must be 1.
7This can be easily computed in Matlab e.g. by typing sum(sum(str =strM))



For strategies prepared by approximate algorithms, the expected losses are also approximate
values and cannot be taken as a fact. However, for a given strategy the Bellman function can be
computed ex-post. This gives us the opportunity to compare off-line strategies directly through
comparison of values of the Bellman function in the first time instant (the belief that the system
is certainly in faultless state will be used). Strategy strM achieves expected loss of 27.8775, while
str 27.5982. The method of saving filtration and prediction results in advance produces slightly
suboptimal maintenance strategy, but also saves a lot of computing time.

The shape of optimal maintenance strategy str is in Figure 6 (action 1 means doing nothing
and action 2 repairing the system). It is just another example of shape discussed in Subsection 4.3.
In this particular case the cutoff time step, after which it is uneconomic to repair system under any
circumstances, is 3 steps before time horizon – as the repair costs 5 and serious fault 2, two or one
step to go the cost of the repair would never be less than letting the system be in a fault state.
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Figure 7: Expected Losses for Constant Border Strategies

According to method of setting constant borders, we define some strategies repairing the system,
if the belief of the faultless state drops below a constant b and find the expected loss by computing
the Bellman function for such strategy. The resulting losses are showed in Figure 7. The minimal
reached value was 27.6795, unsurprisingly slightly higher than the loss for optimal strategy. The
expected loss for strategy of not doing any actions ever was 125.106.

A naive approach completely omitting the diagnostics of the system would be a regular, periodic
maintenance. The periods of 5, 10, . . . 50 were tested – the results are showed in Figure 8, reaching
the minimum of 60.2858, more than two times of the optimal expected loss.
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Figure 8: Expected Losses for Periodic Repair Strategies

The results presented in this section suggest the importance of maintenance strategy design: all
strategies were computed for the same diagnostic model. Their losses, however, ranged from the
minimum of about 28 through 60 for the best possible regular maintenance strategy to 125 for no



repairs. Even the constant border strategies can bring unsatisfactory results for bad choice of borders.

7 Conclusion
The paper has demonstrated capabilities of dynamic programming in the optimal maintenance, as
well as other methods designed to overcome the curse of dimensionality. There remain, however,
some open issues. The most serious one is the loss function which is hard to be defined properly in
case of HVAC systems whose purpose is comfort. Comfort as such is relatively vague and difficult
to be measured and even more difficult is to assign losses to the discomfort.

Another issue is the estimation of observation and dynamic model of the system. The more
accurate are the models, the better results bring the strategies derived from them. It is hard to estimate
the models accurately for dynamic systems with hidden states, as it takes a lot of insight into physical
processes present in it and a large amount of data. One of possible improvements is to exploit the
expert knowledge, but this approach has its own downsides, as not for all systems is the knowledge
available and when it is, the transition of vague human knowledge into estimates of conditional
probabilities is far from trivial.

Even though these aspects are worth to be assessed more properly, the article has summarized
wide range of diagnostic methods and proposed several methods for optimized reasoning about the
Bayesian belief. The variants provide the potential designers with various tools that can be adjusted
for different systems and diagnostic needs.
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