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Abstract 

One of the most recent methods for controller tuning and optimization is Iterative 
Feedback Tuning (IFT). It is capable to optimize parameters of linear digital single-
input, single-output controller of general structure (P, PI, PD, PID, transfer function) 
in closed loop. A software tool applying the IFT method has been developed in 
Matlab environment. This tool was validated on several examples of power-plant 
control. 

1 Introduction 

Industrial processes are commonly controlled by PI/PID controllers and/or similar linear control 
structures. Generally, these are not optimally tuned.  Even if the controllers were tuned in some way at 
the beginning of process operation, it is beneficial to re-optimize/re-tune these controllers. The process 
is evolving in time (wearing down, changing of conditions) and the optimization permits to approach 
once again an optimal performance, i.e. cost-effective, efficient, safe and robust operation. 

Different approaches exist for controller optimization/tuning. There are ad-hoc methods, model-
based optimization methods, etc. One of the most recent methods is Iterative Feedback Tuning (IFT) 
[1]. It is capable to optimize parameters of linear digital single-input, single-output controller of 
general structure (P, PI, PD, PID, transfer function). The main features of the method are: 

• The process remains in closed-loop with initial controller during optimization.  

• System signals are used for optimization, such as: set-point (reference), measured 
process variable, control input, measured disturbance. 

• Performance criterion is optimized which defines: set-point tracking, disturbance 
rejection, control action limitation, robustness. 

• An iterative step-by-step technique is used. New controller with superior performance 
is proposed at the end of each iteration step.  

A software tool applying the IFT method has been developed in Matlab environment by R&D 
Department of Electricié de France, Université Catholique de Louvain Belgium, and Prosystemy 
Slovakia. The tool provides us with an automated interactive (easy-to-use) approach of using the IFT 
method. The tool was validated on several examples of power-plant control. 

The paper is structured as follows. First part introduces IFT method basic theory, its algorithm 
and some of the method’s advanced features. The second part presents the software tool, its essential 
data sets and graphical user interface. The third part describes one controller tuning example. The 
paper finishes with conclusion.  

2 Iterative feedback tuning method 

2.1 Principle 

A one-degree-of-freedom linear discrete-time single-input, single-output controller optimization 
is considered. A corresponding closed-loop (CL) diagram is presented in Figure 1. The term G is 
either a plant model or a real plant with a sample and hold device and the block C represents the 
controller to be optimized. The external signals r(t), d(t), v(t) are an output reference (set-point), a 
possible external control action input, and a perturbation signal, respectively. The output signal y(t) 
(measured variable) and the control action u(t) are internal closed-loop signals. Considering G a linear 
transfer function, the internal closed-loop signals can be described via sensitivity functions as follows: 
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The IFT scheme for 1DOF controller optimization considers the closed-loop system as it is 
shown in Figure 1 but without the control excitation input: d(t) = 0. IFT minimizes the following 
criterion function: 
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In (2), ρ = [ρ1 ρ2 ...]Τ is a vector of controller coefficients to be optimized, e.g. C = C(ρ), and E[] 
denotes expectation with respect to all random signals. The first term in the criterion reflects tracking 
performance specifications with yd(t) a desired closed-loop time response and y(t) an actual output. 
The second term adds a possible control action energy restriction. The transfer functions Ly and Lu are 
some stable weighting/scaling filters adjusting the criterion and λ is a scaling factor added for the 
same purpose. 

 

Figure 1: Closed-loop diagram. 

For numerical evaluation the criterion (1) has the following form (k is signal sample index): 

( ) ( )[ ] ( )[ ]∑∑
==

+−=
N

k
u

N

k
dynum kuL

N
kykyL

N
J

1

2

1

2 )(
1

))()((
1 λρ  (3) 

A minimum of the criterion (2) is searched using a gradient-based local minimization technique 
such as steepest descent, Gauss-Newton, etc. To use these techniques gradient of the criterion function 
(2) is needed: 
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where the signal derivatives has the following form: 
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Notice that in (5) the first terms S and GS are sensitivity functions of the closed loop without 

the term C (see eq. (1)). The second term 
ρ∂

∂C
 is a derivative of the actual controller. Finally let’s call 

the last term r2(t), then r2(t) = (Sr(t)-Sv(t)). The signal r2(t) can be obtained from a closed loop 
response as follows (knowing that GCS+S=1): 
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An estimation of the signal derivatives (5) is generated in the IFT method by applying a special 
experimental reference r2(t) to the closed loop. This will be shown in description of the IFT method 
procedure below. 

2.2 Application 

The IFT method is an iterative procedure. At the end of each iteration step a new controller is 
proposed providing superior closed-loop performance (see Figure 2).  

 

Figure 2: IFT method procedure. 

One iteration step can be described by the following procedure: 

1. 1st real-time experiment. An external excitation signal r1(t) (typically one or more set-
point step changes) is applied to the closed-loop system. In this experiment we obtain 
the following internal closed-loop signals y1(t) and u1(t) containing weighted sensitivity 
functions as shown by (1): 
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2. Construction of the special excitation signal r2(t) as it is shown in (6): 
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3. 2nd real-time experiment. The excitation signal r2(t) is applied to the closed loop, in 
order to obtain an estimate of the signal derivatives (5). These derivatives are necessary 
to compute the gradient of the criterion (4). The following closed-loop responses are 
obtained: 
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4. An estimate of the signal derivatives (5) is obtained by filtering the obtained signals 

u2(t) and y2(t) with the filter 
ρ∂

∂− C
C 1 : 
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5. The gradient (4) is estimated using the signal derivatives estimates (9) and closed-loop 
response (7). The terms -CSv2(t) and Sv2(t) in (9) produce gradient estimation errors. 
The gradient estimate has the following form: 
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6. A new vector of controller coefficients is computed by a gradient-based local search 
method using the gradient estimate (10). A general formula for the local search methods 
is (γi is step size, Ri is a search direction matrix): 
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2.3 Advances of IFT method 
The basic IFT method presented in the previous sections is constantly improved, adapted, and 

modified by different researches [3]. Several adaptations have been developed and validated on 
example in connection with the software tool development as well. The following adaptations of the 
method are the most significant that have been produced during the software tool development: 

• Robustness measures are introduced to the optimized criterion function [2]. 

• Procedure for simultaneous optimization of the controller in several operational set-
points is developed and implemented. 

• Different local optimum search techniques are evaluated and implemented such as 
Davidon-Fletcher-Powel (DFP) or Broyden-Fletcher-Goldfarb-Shanno (BFGS) 
algorithm. 

• Simultaneous optimization of the controller and corresponding feed-forward filter is 
implemented. 

 

3 Software tool 
An interactive software tool has been developed in Matlab environment. The tool was 

developed in collaboration between R&D Department of Electricié de France, Université Catholique 
de Louvain Belgium, and Prosystemy Slovakia. The main goal was to develop a software tool with the 
following main features: 

• The IFT method is implemented. 

• Advanced features of the IFT method are implemented as well. 

• The tool has a user-friendly graphical user interface. 

• A simulink model can be treated. 

• A real process can be treated as well. 

• The tool has control performance analysis tools. 

• The tool has optimization history analysis tool. 

A user work-flow diagram for the software tool is shown in Figure 3. Basic specifications are 
entered first. Next the specifications are semi-automatically converted to IFT method parameters. The 
conversion is made by the software tool, but user should verify and, if necessary, correct the method 
parameters. One or more iterative steps (see Section 2.2) are executed subsequently. Finally, obtained 
results are analyzed to decide on further action.  

In the work-flow described above, three sets of data are considered: Specifications, IFT method 
parameters, and optimization results. The specifications are basic data to be entered by any automation 
engineer. The IFT method parameters can only be modified by an expert in IFT method. Results can 
again be treated by any automation engineer. A brief description of these three data sets is below. 

Specifications: 

• Structure of the optimized controller (PI, PID, …) 



• Initial controller coefficients 

• Sampling time of the controller 

• Desired tracking performance (rising time, overshoot, …) 

• Process description (Simulink model, signal names, real process…) 

• Reference (set-point) signal description 

• Number of operating points. 

IFT method parameters: 

• Number maximal of iterations 

• Actual step size of optimization 

• Actual matrix Ri 

• Scaling filters Ly, Lu. 

• Scaling factor λ 

• Robust stability terms of the criterion function 

Optimization results: 

• New computed controller Ci+1 

• Closed-loop responses obtained in the course of the iteration step 

• Criterion function value 

• Estimated responses for closed-loop with the new controller (closed-loop sensitivities, 
step response) 

 

Figure 3: Workflow diagram. 

Graphical user interface for the software tool main window is shown in Figure 4. The window 
left side (yellow background) displays user inputs (specifications, IFT method parameters). Right side 
(in light blue) presents optimization results and its analysis. 



 

Figure 4: Software tool main window. 

4 Application example: Multi-set-point tuning of barrage level control 

4.1 Process 

A case of dam level control for hydraulic power plant is considered. A non-linear dynamic 
model is used instead of real process. A level of water at the output z(t) [m] is controlled using a PI 
controller by acting on the output flow Qs(t). A disturbance is an input flow Qe(t)∈(0, 2500)m3/s. The 
desired level is zd(t)∈(224.75, 228.5). 

An initial continuous-time PI controller is: 









+=

i
c sT

KsPI
1

1)(  (12) 

with K=-300 [m3/s/m], Ti=5000 [s]. 

The IFT method optimizes a discrete-time controller only. We choose a sampling time Ts = 
600s. The controlled system is only an integrator with variable gain and a delay. Hence the choice of 
the sampling time is a question of desired performance. For example, for a faster closed-loop 
dynamics a shorter sampling time is needed. A discrete-time equivalent of the initial PI controller is 
then: 
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4.2 One-set-point tuning 

First the PI controller will be tuned only in one set-point for Qe between 500 and 1000 m3/s. The 
input excitation signals are shown in Figure 5. After 19 iterations the obtained controller is: 
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The criterion is J0 = 0.056714 for the initial controller and J19 = 0.001103 for the optimized 
controller. The responses of the closed loop for initial and optimized controller are shown in Figure 6. 
However the optimized controller gives an unstable closed loop in other operating set-points as it is 
shown in Figure 7. For Qe > 1700m3/s instability appears. 

 

Figure 5: Experimental input excitations. 

 

Figure 6: Closed-loop output responses of initial (thin line) and optimized (thick line) PI controller in 
the case of one-set-point tuning (dotted line is reference level). 

4.3 All set-point tuning 
The operating set-point depends on the input flow Qe which ranges from 0m3/s to 2500m3/s. We 

split the operating range into three operating set-points: 

• Set-point no. 1: Qe ∈ (0, 1000) 

• Set-point no. 2: Qe ∈ (1000, 2000) 

• Set-point no. 3: Qe ∈ (2000, 2500) 

For these three operating set-points we define input signals as it is shown in Figure 8. We use 
the proposed procedure to tune the controller in all three set-points simultaneously.  After 6 iterations 
the obtained controller is: 
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Figure 7: Closed-loop output response of the optimized PI controller in the case of one-set-point 
tuning, input signals pass all set-points (dotted line is reference level). 

 

Figure 8: Input signals for tuning in all three set-points. 

 

The criterion is J0 = 0.05825 for the initial controller and J6 = 0.012972 for the optimized 
controller. The optimized controller gives stable closed loops in all operating set-points and the 
reference tracking is excellent compared to initial PI controller, see Figure 9. 

5 Conclusion 
An interactive software tool implementing IFT method is developed and tested. The tool 

implements not only classical IFT method theory. Several advanced features of the method are 
introduced as well. Different control tuning and optimization case studies have been made using the 
software to verify and improve software tool efficiency. One of the cases is presented in this paper. A 
list of case studies made for the software tool testing is in Table 1. 

 



 

Figure 9: Closed-loop output response for the initial (fine line) and optimized (bold line) PI controller 
in the case of all-set-point tuning. Dotted line is level reference (set-point). 

Table 1: CASE STUDIES FOR TESTS AND VALIDATION OF THE SOFTWARE TOOL. 
Case Controller 

structure 
Optimized performance Process/model Power 

plant 
Dam level 

control 
PI Multi-set-point tracking (robust 

performance) 
Non-linear 

Simulink model 
Hydraulic 

Level control for 
steam generator 

PID + feed-
forward 

Set-point tracking Non-linear 
Simulink model 

Nuclear 

1st order linear 
model control 

(see [2]) 

PI Set-point tracking and robust 
stability 

Linear Simulink 
model 

- 

Re-heater control PI  Set-point tracking and output 
disturbance rejection 

Linear Simulink 
model 

Thermal 

Pressure and 
power control 

Two PI 
controllers 

Multi-set-point tracking (robust 
performance) 

Non-linear 
Simulink model 

Thermal 

Steam 
temperature 

control 

Cascade of 
two PI 

Set-point tracking and output 
disturbance rejection 

Real process Thermal 
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