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Abstract 

The paper deals with the Matlab implementation and simulation of channel coding 
and modulation of DVB-T (Digital Video Broadcasting – Terrestrial). Transport 
stream multiplex adaptation and randomization for energy dispersal, outer coding 
and interleaving, inner coding and  interleaving, constellation and mapping blocks 
of encoder and decoder are implemented. Channel encoder and decoder follow 
European Standard ETSI EN 300 744 for digital terrestrial television and provide 
utilization of different convolutional encoder code rates, two inner modulation modes 
schemes for 2k and 8k OFDM (Orthogonal Frequency Division Multiplexing). 
The modulation OFDM was not implemented. 

1 Introduction 

The DVB-T (Digital Video Broadcasting – Terrestrial) is ETSI EN 300 744 standard [1] 
of European digital television for the terrestrial transmission to fixed, portable and mobile receivers. 
The DVB-T Standard specifies the framing structure, channel coding and modulation for digital 
terrestrial broadcasting. The system is fully compatible with MPEG-2 coded TV signals 
ISO/IEC 13818 [2] and has several similarities of channel coding with DVB-S (Digital Video 
Broadcasting – Satellite) and DVB-C (Digital Video Broadcasting – Cable) standards. 

2 Channel Coding and Decoding structure 

The system is composed of functional blocks performing the adaptation of the baseband TV 
signals from the output of the MPEG-2 transport multiplexer to the terrestrial channel characteristics. 
The system input data stream is organized in fixed length 188 bytes MPEG-2 packets. 

The following processes are applied to the data stream [1]: 

transport multiplex adaptation and randomization for energy dispersal; 

outer coding (i.e. Reed-Solomon code); 

outer interleaving (i.e. convolutional interleaving); 

inner coding (i.e. punctured convolutional code); 

inner interleaving (either native or in-depth); 

mapping and modulation; 

Orthogonal Frequency Division Multiplexing (OFDM) transmission. 

 

These processes (except for OFDM) are performed in Channel coder and Channel decoder with 
the configurations depicted in Figure 1. 



   

a) FEC encoder     b) FEC decoder 

Figure 1: Flow-chart of channel coding and decoding in DVB-T (implemented in Matlab) 

Transport multiplex adaptation and randomization, outer coding and outer interleaving are 
common with the Satellite DVB-S baseline specification ETSI EN 300 421 [3] and Cable DVB-C 
baseline specifications ETSI EN 300 429 [4] and the inner coding is common with the Satellite 
baseline specification. Detailed description of DVB-T channel coder blocks can be found in [1]. 

3 Channel Coding implementation in Matlab 

Following section describes possible implementation of channel coding/modulation 
and decoding/demodulation for DVB-T in accordance with European Standard ETSI EN 300 744 [1] 
for digital terrestrial television. 

3.1 Transport multiplex adaptation and randomization for energy dispersal 

The System input stream is composed by MPEG-2 transport multiplex (MUX) packets with 
total length 188 bytes. The data of the input MPEG-2 multiplex are randomized to ensure adequate 
binary transitions. First byte of packet is synchronization word byte (i.e. 47HEX). Synchronization 
words are not randomized. The polynomial for the Pseudo Random Binary Sequence (PRBS) 
generator shall is 1 + X14 + X15. 

Initialization sequence "100101010000000" is loaded to the PRBS registers at the beginning of 
every eight transport packets – once per frame composed by 8 packets. The first synchronization byte 
word of every frame is bit wise inverted to provide an initialization for descrambler. Synchronization 
byte words are not randomized. 

Following code performs randomization or de-randomization of one frame: 

 
enable = [zeros(1,8),ones(1,1496)];  %randomize enable signal for one packet  
enable = [enable, enable, enable, enable, enable, e nable, enable, enable];  %frame    
     

for  b = 1:12032 %188 bytes * 8 bits = 1504 bits, 1504 bits * 8 pack ets = 12032 
        if  b < 9    %PRBS generator starts after 1st sync word  
            randomized(b) = inp2rand(b);           
        elseif  b > 8 
        PRBSout = xor(PRBS(1,14),PRBS(1,15));   
        PRBS = circshift(PRBS, [1,1]); 
        PRBS(1,1) = PRBSout; 
   %sync words are not randomized due to enable signal  
        randomized(b) = xor(inp2rand(b),(and(enable (b),PRBSout)));   
        end                                                   

end  



3.2 Outer coding and outer interleaving 

The outer coding and interleaving is performed on the randomized 188 bytes transport packets 
structure. Reed-Solomon RS (204, 188, t = 8) shortened code is derived from the original systematic 
RS (255, 239, t = 8) and may be implemented by adding 51 bytes, all set to zero, before the 
information bytes at the input of an RS (255, 239, t = 8) encoder. These null bytes shall be discarded 
after the RS encoding procedure, leading to a RS code word of N = 204 bytes. 

Following code performs Reed-Solomon RS (204, 188, t = 8) encode: 

 
zeros51 = zeros(8,51); % null bytes filling to 255 bytes words  
data239B = [zeros51, data188B]; % 51 null bytes + 188 data bytes  
 
%Reed-Solomon encoding  
m = 8;  % Number of bits in each symbol  
n = 255; k = 239; % Codeword length, message length - RS(255,239)  
msg = gf(data239B,m); % Represent data using a Galois array  
  
RS255_239 = rsenc(msg,n,k);  % Reed-Solomon(255,239) encoding  
RS255_239 = double(RS255_239.x); % Conversion from Galois array to double  
RS204_188 = RS255_239(:,52:255); % Reed-Solomon(204,188) shortening  

 

Convolutional byte-wise interleaving with depth I = 12 is applied to the error protected 204 
bytes packets. The interleaver is composed of I = 12 branches, cyclically connected to the input byte-
stream by the input switch. Each branch j shall be a First-In, First-Out (FIFO) shift register, with depth 
j * M cells where M = 17 = N/I, N = 204. 

Following code performs byte-wise interleaving: 

% Outer interleaving  
M = 17; % M = 204/12 = 17  
 
% Set delays of 12 shift registers  
delay  = [0  M (2*M)  (3*M)  (4*M)  (5*M)  (6*M)  (7*M)  (8*M)  (9*M)  (10*M)  (11*M)]; 
 
intDelay = length(delay)*max(delay); % Interleaver delay  
intFill = zeros(1,intDelay); % zeros fill for delay compensation  
interleaverIn = [RSout,intFill]; % RSout represents RS protected packets  
  
outInterleaved = muxintrlv(interleaverIn,delay); % Outer interleaving  

 

3.3 Inner coding 

The system allows a range of punctured convolutional codes, based on a mother convolutional 
code of rate 1/2 with 64 states. The generator polynomials of the mother code are G1 = 171OCT for X 
output and G2 = 133OCT for Y output. 

Following code performs mother convolutional encode with rate 1/2: 

% Convolutional encoding  
trel = poly2trellis(7,[171 133]); % Define trellis  
 
encoded = convenc(msgBits,trel); % Convolutional encode of msgBits  

 

Selection of puncturing code rate allows selection of the most appropriate level of error 
correction for a given service or data rate. Available code rates CR are 1/2, 2/3, 3/4, 5/6, 7/8. 

Following code presents puncturing with code rate CR = 2/3: 

 



if  CR == '2/3'  
    missingPunct = 4 - mod(len,4); % bits missing to divisibility by 4  
    tcode = [encoded,zeros(1,missingPunct)]; % filling with zero bits  
    len = length(tcode);  % new length  
     
    reshaped = reshape(tcode,4,((len/4))); % prepare for puncturing  
    punctOut = reshaped;  
    punctOut(3,:) = [];     % remove of X2  
    punctOut = reshape(punctOut,1,(len*3/4)); % X1 Y1 Y2 
end 
 

3.4 Inner interleaving 

Inner interleaving block consists of bit-wise interleaving followed by symbol interleaving. Both 
the bit-wise interleaving and the symbol interleaving processes are block-based. Non-hierarchical 
mode is described only. 

Bit-wise interleaving input is demultiplexed (mapped to output modulation symbols) into v sub-
streams, where v = 2 for QPSK, v = 4 for 16-QAM, and v = 6 for 64-QAM. Each sub-stream is then 
interleaved in the interleaver with own interleaving sequence - permutation function. The bit 
interleaving block size is 126 bits and is the same for each interleaver. The block interleaving process 
is repeated exactly twelve times per OFDM symbol in the 2K mode and forty-eight times per symbol 
in the 8K mode. 

Following code presents demultiplexing to 4 substreams for 16-QAM: 

% correct data length prepare  
r = (numel(input)/v);  % m - rows number of reshaped data matrix  
a = (reshape(input,v,r))'; % v - columns number of reshaped data matrix,

  
% v - number of sub-streams  

repetitions = ceil(r/126); % number of block interleaving repetitions  
fill2b = zeros(1,(repetitions*126 - r)); % zeros to be filled at the end of  

% multiplexed streams  
 
% demultiplexing for 16-QAM  
if  v == 4   % demultiplexed 4 data streams for 16QAM  
    b0 = (a(:,1))'; % b – demultiplexed sub-streams  
    b1 = (a(:,3))';  
    b2 = (a(:,2))';  
    b3 = (a(:,4))';  
     
    b0 = [b0,fill2b]; % zero bits filling for divisibility by 126  
    b1 = [b1,fill2b];  
    b2 = [b2,fill2b]; % zero bits filling for divisibility by 126  
    b3 = [b3,fill2b];  
end 

 

Following code performs bit-wise interleaving for 16-QAM: 
 
% permutation functions 
w = 0:125; 
 
H0 = w;   % permutation functions for I0:I5 interleavers  
H1 = mod((w+63),126);      
H2 = mod((w+105),126);  
H3 = mod((w+42),126);  
 
 
%bit-wise interleaving  
Aout = [];      %interleaved output matrix preparation  
  



for  c = 1:repetitions       %cycles of 126 bits blocks interleaving  
    low = c*126-125;  
    high = c*126;  
     
        B0 = b0(1,low:high);    %load of actual blocks  
        B1 = b1(1,low:high);  
     
    if   v == 4  
        B2 = b2(1,low:high);  
        B3 = b3(1,low:high);  
    end    
 
% interleaved outputs  
    if  v == 4  
        a0(1,w+1) = B0(1,(H0+1)); % indexed by w+1 and H+1 because Matlab 
        a1(1,w+1) = B1(1,(H1+1)); % indexing rules i<0  
        a2(1,w+1) = B2(1,(H2+1));  
        a3(1,w+1) = B3(1,(H3+1));  
        A=[a0;a1;a2;a3];  
        Aout = [Aout,A];  
    end  
end  
 

Symbol interleaving is performed at bit-wise interleaved substreams. The purpose of the symbol 
interleaver is to map v bit words onto the 1 512 (in 2K mode) or 6 048 (in 8K mode) active carriers per 
OFDM symbol. The symbol interleaver acts on blocks of 1 512 (in 2K mode) or 6 048 (in 8K mode) 
data words. Details about permutation function of symbol interleaver can be found in [1]. 

Following code computes permutation function for 2K mode: 
if  mode == '2k'  
     K = 1512; % number of active data (sub)carriers (2 * 6) * 126  = 1512  
     Nmax = K; % inner symbol interleaver block size  

Mmax = 2^11; % IFFT length  
Nr = log2(Mmax); % (Nr - 1) bits length of binary word Rii  

 
% permutation function inputs prepare  
Rii(1,:) = zeros(1,Nr-1); 
Rii(2,:) = zeros(1,Nr-1);  
Rii(3,:) = [zeros(1,Nr-2),1];  
 
for  i = 4:Mmax  
    Rii(i,2:(Nr-1)) = Rii((i-1),1:(Nr-2));  
    Rii(i,1)        = xor(Rii((i-1),Nr-1),Rii((i-1) ,Nr-4));  
end  
Ri = Rii(:,10), Rii(:,3), Rii(:,5), Rii(:,9), Rii(: ,2), Rii(:,8), 

Rii(:,4), Rii(:,1), Rii(:,7), Rii(:,6)];  
end  
 
 
% permutation function H computation  
q = 0;  
for  i = 0:(Mmax-1)  
    for  j = 0:(Nr-2)  
        Rij(i+1,j+1) = Ri(i+1,j+1)*2^j;  
    end  
  
    Hq(1,q+1) = (mod(i,2))*2^(Nr-1)+sum(Rij(i+1,:)) ; % Permutation function  
     
    if   Hq(1,q+1) < Nmax  
        q = q+1;  
    end  
end 



Following code performs symbol interleaving: 
 
Yinp = Yin(:,(s*Nmax-(Nmax-1)):(s*Nmax));  % load of actual symbol data  
for  q = 1:Nmax  

if rem(s, 2) == 0  
Yint(:,(Hq(q)+1)) = Yinp(:,q); % interleaving of words for  

% even OFDM symbols  
else  

Yint(:,q) = Yinp(:,(Hq(q)+1)); % interleaving of words for  
% odd OFDM symbols  

end  
end  

 

3.5 Signal constellations and mapping 

The system uses Orthogonal Frequency Division Multiplex (OFDM) transmission. All data 
carriers in one OFDM frame are modulated using QPSK, 16-QAM, 64-QAM, non-uniform 16-QAM 
or non-uniform 64-QAM constellations. 

Following code present simple constellations mapping for QPSK: 
 

if  strcmp(Modulation, 'QPSK' )  
for  q = 1:Nmax;  

if  Y(q,:)==     [0 0];  
            mapped(q)= +1+1j;  
            elseif  Y(q,:)== [0 1];  
            mapped(q)= +1-1j;  
            elseif  Y(q,:)== [1 0];  
            mapped(q)= -1+1j;     
            elseif  Y(q,:)== [1 1];  
            mapped(q)= -1-1j;  
            end  

end  
end 
 

4 Examples of implemented channel coder and decoder functionality 

DVB-T channel coder as described above and DVB-T channel decoder have been 
implemented in Matlab. Picture pout.tif was used as useful data load incoming to channel coder. Data 
of length 69840 bytes were processed and left coder in form of 64-QAM mapped symbols. AWGN 
(Additive white Gaussian noise) was added to mapped symbols to simulate MER (Modulation Error 
Rate). Code rate 1/2 and mode 8K were used for simulations. Operations inverse to coder were then 
performed in decoder with following results. Simulated error rates for different MER values are in the 
Table 1. 

BER0 in Table 1. represents bit errors after hard decision demapper, BER1 is error rate after 
Inner deinterleaver, BER2 is error rate after Vietrbi (Inner) decoder and BER3 is error rate after Outer 
deinterleaving and outer (Reed-Solomon) decoder. 



TABLE 1: SIMULATED BER OF DVB-T TRANSMISSION WITH AWGN 

MER BER0 BER1 BER2 BER3 

30 dB 0 0 0 0 

25 dB 1.09 10-4 1.13 10-4 0 0 

20 dB 1.25 10-2 1.27 10-2 2.45 10-5 0 

17 dB 4.31 10-2 4.37 10-2 1.50 10-3 0 

16 dB 5.67 10-2 5.75 10-2 6.20 10-3 5.19 10-5 

15 dB 7.16 10-2 7.27 10-2 2.09 10-2 2.05 10-2 

14 dB 8.74 10-2 8.88 10-2 5.70 10-2 6.35 10-2 

 

 

   

a) 64-QAM symbols with MER = 30dB  b) 64-QAM symbols with MER = 20dB 

 

   

c) 64-QAM symbols with MER = 17dB  d) 64-QAM symbols with MER = 14dB 

Figure 2: Received 64-QAM symbols with AWGN added 

Figure 2 shows received symbols of 64-QAM modulation with added AWGN with decreasing 
MER. Although the received constellation with MER = 17dB is significantly distorted, data are 
decoded with BER = 0 and restored picture is without errors. 

Errors are detected in pictures with levels lower than MER = 16, as is shown in Figure 3. 



 

a) Decoded picture with MER = 17dB  b) Decoded picture with MER = 16dB 

 

 

c) Decoded picture with MER = 15dB  d) Decoded picture with MER = 14dB 

Figure 3: Pictures decoded from received symbols with AWGN added 

5 Conclusion 

Presented implementation of DVB-T channel coder and decoder and results of its simulation in 
Matlab are in general in accordance with assumptions of MER relation and error rates after 
corresponding error correction. However, simulated error rates are influenced by finite data length in 
opposite to continuous data stream in real digital television broadcast. 

This work will continue with implementation of DVB-H extensions of cannel coding and 
following OFDM modulation and different transmissions channels and environments for broadcasting 
to fixed, portable and mobile receivers. 
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