
APPLICATIONS OF INTELLIGENT HYBRID SYSTEMS
IN MATLAB

Z. Dideková, S. Kajan

Institute of Control and Industrial Informatics, Faculty of Electrical Engineering and Information
Technology, Slovak University of Technology in Bratislava, Slovak Republic

Abstract

This paper deals problem of intelligent hybrid systems. Intelligent systems include
neural networks (NN), fuzzy systems (FS) and genetic algorithms (GA). Each of these
intelligent systems has certain properties (ability of learning, modelling, classifying,
obtaining empirical rules, solving optimizing tasks …) fitting specific kind of
applications. Combination of these intelligent systems creates neuro-fuzzy system,
fuzzy-GA system, neuro-GA system and these systems together are called hybrid
intelligent systems (HIS). For these purposes, there was created program
in Matlab, where were made several demo applications for several HIS in the field of
system modelling and control.

1 Principles of Hybrid intelligent systems
Several modern applications are realised by intelligent technologies as are neural networks

(NN), fuzzy systems (FS) and genetic algorithms (GA). Each of these intelligent systems has certain
properties (ability of learning, modelling, classifying, obtaining empirical rules, solving optimizing
tasks …) fitting specific kind of applications. Table 1 presents a comparison of different intelligent
system [1].

Table 1: COMPARISON OF FUZZY SYSTEMS (FS), NEURAL NETWORKS (NN) AND
GENETIC ALGORITHMS (GA)

 FS NN GA
Knowledge representation good bad rather bad

Uncertainty tolerance good good good
Imprecision tolerance good good good

Adaptability rather bad good good
Learning ability bad good good

Explanation ability good bad rather bad
Knowledge discovery and

data mining rather bad good rather good

Maintain ability rather good good rather good

Noticed, that in many real applications we would need not only to acquire knowledge from
various sources, but also to combine different intelligent technologies. The need for such a
combination has led to the emergence of hybrid intelligent systems (HIS). A hybrid intelligent system
is one that combines at least two intelligent systems, i.e. combination of these intelligent systems
creates neuro-fuzzy system, fuzzy-GA system, neuro-GA system [1]. The block scheme of HIS is
depictured in Fig. 1.

For example, HIS can represent following forms. Neuro-fuzzy system is realized as a neural
network, in which fuzzy system parameters are encoded in several layers. Using network learning
ability the parameters can be adapted, hence the system is called adaptive neural fuzzy inference
system (ANFIS). Fuzzy-GA system provides fuzzy system parameters optimization using GA. Neuro-
GA system provides neural network parameters optimization using GA. For example, in Matlab were
made several demo applications for several HIS in the field of system modelling and control.

Figure 1: The block scheme of Hybrid Intelligent Systems

2 Genetic algorithms
Genetic algorithm (GA) is a powerful stochastic-based search/optimization approach, which

mimics the evolution in the nature. It is described in e.g. [2, 3, 4, 5] and others. A general scheme of a
GA can be described by following steps (Fig. 2):

1. Initialization of the population of chromosomes (set of randomly generated chromosomes).

2. Evaluation of the cost function (fitness) for all chromosomes.

3. Selection of parent chromosomes.

4. Crossover and mutation of the parents → children.

5. Completion of the new population from the new children and selected members of the old
population. Jump to the step 2.

Figure 2: Block scheme of genetic algorithm

Genetic algorithms fall into the optimization techniques, which are able to find global optimum
of the function. They can be used to modeling or control linear or non-linear systems using fuzzy logic
or neural networks.

When the neural networks are used, the wanted parameters in chromosomes can be connections
in the neural network, values of weights and biases or the both.

In the case of fuzzy logic, the wanted parameters are parameters of membership functions, base
of rules or the both.

In modeling of a system, the optimized function is the cost function:

 ∑∑ ==
−==

N
i imi

N
i i yyeJ

11
, (1)

where y is output from the system, ym is output from the model of system, e is model error and N is
number of patterns.

In control of a system, the optimized function is the cost function:

 ∑∑ ==
−==

N
i ii

N
i i yreJ

11
, (2)

where r is reference variable, y is controlled output, e is control error and N is number of
patterns.

In the both of cases, the minimum of fitness is searching. Fitness is represented by the cost
function or in the case of control, by the modified cost function, which can be penalized for example
by derivation of process output y, or by measure or derivation of control action u.

3 Modelling of nonlinear function using ANFIS
Neuro-fuzzy system represents connection of numerical data and linguistic representation of

knowledge. The system is characterized by transparency as fuzzy systems and learning ability as
neural networks. The structure of a neuro-fuzzy system is similar to a multi-layer neural network. In
general, neuro-fuzzy system has input and output layers, and three hidden layers that represent
membership functions and fuzzy rules. Encoded fuzzy system in several layers of neural network can
be in form Mamdani or Sugeno fuzzy interface model. Using network learning ability, the parameters
can be adapted, hence the system is called adaptive neural fuzzy inference system (ANFIS) [1, 6].
ANFIS represents Sugeno fuzzy model, which fuzzy rules can be expressed in the following form:

IF x1 is A1 AND x2 is A2 …. AND xm is Am THEN y=f(x1,x2,…,xm)

where x1, x2, …, xm are input variables, A1, A2, …, Am are fuzzy sets and y is either a constant or a
linear function of the input variables. ANFIS is represented by a six-layer feedforward neural network,
which architecture is displayed in Fig. 3 [1].

Figure 3: The architecture of ANFIS

ANFIS is trained using I/O data and backpropagation algorithm. By train algorithm are
optimized fuzzification neurons parameters, mask of inference system and defuzzification neurons
parameters [1]. For example, ANFIS is used for modelling of nonlinear 3D function with name Peaks
in following form:

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
−−−−+−−

⎟
⎠
⎞⎜

⎝
⎛ −+−−−

−=

22)1()22(5322

3
1)

5
(10)1(

2)1(3
yxyx eeyxxyx

exz (3)

Peaks function neuro-fuzzy model has been created in Matlab. There has been made training and
testing data set, both in the range 3;3, −∈yx and interval between each two consecutive input
samples on the both axes was for training data 0.5 and for testing data 0.25 (Fig. 4).

a) b)

Figure 4: Training data a) and Testing data b)

ANFIS structure has been created using order genfis1 in Matlab [6]. The order designs initial
Sugeno type fuzzy inference system using a grid partition. There has been chosen 7 gbell membership
functions for both of the inputs x and y.

data = [x y z];
in_fis = genfis1(data,[7 7],char('gbellmf','gbellmf'));

There has been used matlab order anfis for neuro-fuzzy system training, which uses hybrid
learning algorithm to identify the membership function parameters of single-output, Sugeno type
fuzzy inference systems (FIS). A combination of least-squares and backpropagation gradient descent
methods are used for training FIS membership function parameters to model a given set of
input/output data [6]. There has been employed 200 training epochs for training.

epoch_n = 200;
out_fis = anfis(data,in_fis,epoch_n);

Trained neuro-fuzzy system (ANFIS) next has been tested on training and testing data. There
has been used order evalfis to enumerate output from the system [6].

outfissim = evalfis([x y],out_fis);

There has been calculated sum of least-squares errors of outputs from modelled system and
Peaks function for training and testing data.

 ∑
=

−=
N

i
ii simzze

1

2)_(, (4)

Where z is output from Peaks function, z_sim is output from modelled neuro-fuzzy system and N
is number of samples.

There has been attained these error values: training error e_tren = 0.0015 and testing error
e_test = 11.1034. On Fig. 5, there are shown output from ANFIS for training a) and testing b) and
errors of training c) and testing d).

a) b)

c) d)

Figure 5: Output from ANFIS for training a) and testing b), Errors of training c) and testing d)

4 Fuzzy PI controller with membership functions optimization using GA
In combination of fuzzy system and genetic algorithm, GA is used in the design of fuzzy system

parameters, particularly for generating fuzzy rules and adjusting membership functions of fuzzy sets.
For example of neuro-GA system application is fuzzy PI controller with membership functions
optimization using GA.

Simulation scheme of the controlled process is on Fig. 6 and its step response is on Fig. 7.

Figure 6: Scheme of the controlled process

Figure 7: Step response of the process

Simulation scheme of the controlled process with fuzzy PI controller is on Fig. 8 and its step
response (fuzzy PI controller has uniform setting of membership functions) is on Fig. 9.

Figure 8: Scheme of the controlled process with fuzzy PI controller

Figure 9: Step response of the controlled process with initial fuzzy PI controller

Inputs to the fuzzy PI controller are control error e and derivation of control error de. Output
from the controller is derivation of control action du. Each input and output has 5 membership
functions. Optimized is position of 2 membership function tops and spread of 3 membership functions.
Each variable is symmetric. The shape of membership function is triangle. There are 2 unknown
parameters for each variable. First and fifth membership functions are fixed, second membership
function start, where is the top of first membership function and fourth membership function end,
where is the top of fifth membership function. Top of the third membership function is in the middle
of the range of the variable and there is also end of second and start of fourth membership function.
Unknown are top of second and start of third membership function and end of third and top of fourth
membership functions are symmetric. Together, there are 6 unknown parameters.

One of initial adjustments has uniform setting of membership functions (Fig. 10) and base of
rules is fixed (Table 2). The sum of absolute control errors (SAE) with fuzzy PI controller with
uniform setting of membership functions was SAE = 589.6102. Size of population was set to 30 and
number of generations to 200.

On Fig. 11, there is shown the best fitness of population in dependence on generation and on
Fig. 12, there is depicted the best adjustment. The step response is shown on Fig. 13. The sum of
absolute control errors with optimized fuzzy PI controller was SAE = 346.7841.

Figure 10: Initial adjustment of the inputs e, de and the output du

Table 2: BASE OF RULES

de\e VZ Z N K VK

VZ VZ VZ VZ Z N

Z VZ VZ Z N K

N VZ Z N K VK

K Z N K VK VK

VK N K VK VK VK

Figure 11: Best fitness of population in dependence on generation

Figure 12: Best adjustment of the inputs e, de and the output du

Figure 13: Step response of the controlled process with optimized fuzzy PI controller

5 Neuro-predictive controller design based on genetic algorithms
The block scheme of the used controller structure is depicted in Fig. 14. Without loss of

generality, in case of the controlled process model a MLP (multilayer perceptron) artificial neural
network is considered. The number of layers is 3 and the number of neurons in the input and hidden
layer and their interconnections are the objects of the design/optimisation process. As the learning rule
the off-line version of the Error-back-propagation method with Levenberg–Marquardt modification is
considered [9]. The model predictive control method is based on the receding horizon technique [7].
The neural network model predicts the plant response over a specified time horizon. The predictions
are used by a numerical optimization routine to determine the control value u(k) in each control period
k that minimizes the following performance criterion J over the specified horizon.

 () min?; →=∆ Jku (5)

 () ()[] ()[]∑∑
==

−+∆++−+=
uN

i

N

Ni
ikuikyikrJ

1

22 1.ˆ
2

1

ρ (6)

 () () ()kukuku ∆+−= 1 (7)

Here the r is the reference signal, ŷ is the controlled value prediction, ∆u is the control value
change, k is the control step, N1 is the lower and N2 the upper output prediction horizon, Nu is control
horizon and ρ is a weight constant. The control performance depends on the values N1, N2, Nu and ρ.
The block scheme of the neural model is in Fig. 15. The number of inputs yk-1, yk-2, …, yk-n, uk, uk-1, …,
uk-m (number of past samples of y and u) and the number of neurons in the hidden layer are normally
set by the designer using experience. But often the chosen model architecture is not optimal because of
the modelling accuracy and on the other hand from point of view computation time.

Figure 14: Block scheme of neuro-predictive controller

Figure 15: Neural network structure for process modelling

GA’s are used for search for the optimal neural model architecture and for the predictive
controller parameter optimisation.

Let consider the non-linear system, which is described by the differential equation:
 03,02,07,0 3 =−++′+′′ uyyyy (8)

The block scheme of the non-linear system Eq. (8) is depicted in Fig. 16.

Figure 16: Simulation block scheme of non-linear system

5.1 Optimisation of neural model structure
For modelling of the non-linear system neural model structure with 6 inputs and 10 hidden

neurons (Fig. 17) is used. In the case of the neural model, the number of neurons in input and hidden
layer, and their interconnections have been optimised [8]. The interconnection map of the net is coded
into the chromosome of the GA (Table 3). The length of the chromosome is 70 genes (Table 4). The
genes can be either values 0 or 1, where 1 represents connection between neurons and 0 no
connection.

TABLE 3: THE INTERCONNECTION MAP OF THE NEURAL NETWORK BETWEEN NEURONS
Input Neurons Hidden Neurons ON

1 2 . 5 6 7 8 . 15 16 17
1 0 0 . 0 0 0 0 . 0 0 0
2 0 0 . 0 0 0 0 . 0 0 0
.
5 0 0 . 0 0 0 0 . 0 0 0
6 0 0 . 0 0 0 0 . 0 0 0
7 1 1 . 1 1 0 0 . 0 0 0
8 1 1 . 1 1 0 0 . 0 0 0
.

15 1 1 . 1 1 0 0 . 0 0 0
16 1 1 . 1 1 0 0 . 0 0 0
17 0 0 . 0 0 1 1 . 1 1 0

TABLE 4: THE CHROMOSOME REPRESENTATION
1-10 11-20 . 41-50 51-60 61-70

1 1 1 1 . 1 1 1 1 1 1

Over the chromosomes in the population, genetic operations crossover and mutation are applied.
After these operations, unrealizable neural network structures can appear. Hence, in case of input
neuron with no connection and hidden neuron with no connection to input or to output, such neurons
are omitted from the net structure.

Figure 17: Neural model structure with full connections

For searching optimal neural model structure with GA, the used cost function (fitness) was
considered in the form

55 10)/(10)/()1(−− ∗∗+∗∗−+= nnnwnwMSEF αα (9)

MSE – mean square error of the neural model (in comparison with the modelled object)

α – weight constant, which was set to 0.7

w – number of weighted interconnections between the input and hidden layer

wn – maximal number of all interconnections

n – number of neurons in network

nn – maximal number of neurons in network

10-5 – weight constant

The optimised neural network structure is shown in Fig. 18. Using testing data the obtained error
was MSE=0.4216e-6.

Figure 18: Neural model with optimal structure

5.2 Optimisation of neural controller parameters
The second design step was the search for the predictive controller cost function coefficients N1,

N2, Nu and ρ. For this purpose another GA has been used, where the fitness consists of the closed-loop
simulation and the performance index evaluation Eq. (10). An example of a simple performance index
is as follows:
 ∫=

T

AE dtteI
0

)((10)

where e is the control error. This performance index has been minimised, and it represents the
controller performance. The obtained results after these two design steps, which were performed
off-line are demonstrated in Fig. 19. It is the time-response of the controlled system (green) after the
reference signal steps (blue). The control value time-response is in Fig. 20. In Fig. 21 the trend of the
fitness function is depicted, which is the graph of the current best individual of the actual population
vs. generation number.

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

Time [s]

w
,y

Reference variable and Output plant

Figure 19: Time-response of the controlled system

0 5 10 15 20 25 30
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time [s]

u

Control variable

Figure 20: Control value of neural predictive controller

0 10 20 30 40 50 60 70 80 90 100
9.4

9.6

9.8

10

10.2

10.4

generation

E
=s

um
(|w

-y
|)

Figure 21: Evolution of the fitness function

6 Conclusion
The main objective of this article was to demonstrate very good properties of hybrid intelligent

systems. In several examples from modelling and control domain we showed good efficiency of
hybrid intelligent systems. We used Matlab Simulink to evaluate quality modelling and control
criteria. Due to properties as the ability of learning, modelling, classifying, obtaining empirical rules,
solving optimizing tasks, hybrid intelligent systems are applying in many applications.

Acknowledgement

The work has been supported by the grants agency VEGA no. 1/0544/09 and no. 1/0690/09.

f
i
t
n
e
s
s

References

[1] M. Negnevitsky, Artificial Intelligence. Pearson Education Limited, 2005
[2] D.E.Goldberg, Genetic Algorithms in Search, Optimisation and Machine Learning. Addisson-

Wesley, 1989
[3] K.F. Man, K.S. Tang, S. Kwong, Genetic Algorithms, Concepts and Deign. Springer, 2001
[4] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolutionary Programs. Springer, 1996
[5] I.Sekaj, Evolučné výpočty a ich využitie v praxi, Iris 2005, Bratilava (in slovak)
[6] The Mathworks. Fuzzy Toolbox,User’s Guide, documentation on CD
[7] D. Soloway, P.J. Haley, “Neural Generalized Predictive Control”, In: Proceedings of the 1996

IEEE International Symposium on Intelligent Control, 1996, pp. 277-281
[8] P. Sartoris, Generovanie optimálnej štruktúry neurónových sietí pomocou genetických

algoritmov, Diploma thesis, FEI STU Bratislava, 2008
[9] The Mathworks, Matlab Release 2006b, documentation on CD
[10] The Mathworks. Neural Network Toolbox,User’s Guide, documentation on CD

Ing. Zuzana Didekova, E-mail: zuzana.didekova@stuba.sk
Institute of Control and Industrial Informatics, Faculty of Electrical Engineering and Information
Technology, Slovak University of Technology in Bratislava

Ing. Slavomír Kajan, PhD, E-mail: slavomir.kajan@stuba.sk
Institute of Control and Industrial Informatics, Faculty of Electrical Engineering and Information
Technology, Slovak University of Technology in Bratislava

