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Abstract

A lot of technical problems lead to systems of linear equations. The matrices of

the systems are often sparse, then a proper reordering of their rows and columns

may reduce the time needed for solution and the validity of the result. We focus

in Tarjan’s algorithm which permutes the rows and columns of a matrix in order

to obtain a block triangular matrix with irreducible diagonal blocks.

1 Irreducible matrices and graph partitioning

A solution of a set of linear equations may be affected by a pattern of nonzero elements of a matrix
of the system. Using the Gauss elimination or some numerical methods, an appropriate order
of rows and columns may reduce the time of computing and the accuracy of the result.

We focus in a method which determines such a permutation of rows and columns of
a matrix that it becomes block upper triangular with irreducible diagonal blocks. In addition, the
rows and columns are permuted symmetrically, i.e. once the columns j and k are interchanged,
then also the rows j and k are switched. This method is called Tarjan’s algorithm and is carefully
described in [1].

The theory of irreducible matrices is closely related to the graph theory. Matrix B is
reducible if there exists a permutation matrix P such that

P T BP =

(

B1 B2

0 B3

)

, (1)

where B1 and B3 are square matrices. A matrix is irreducible if it is not reducible.

Let us introduce some basic notions from the graph theory. Any N ×N matrix B can be
associated to a directed graph consisting of a set of N nodes (vertices) v1, . . . , vN and of a set of
edges, each of which is an ordered pair of nodes (vi, vj), corresponding to some nonzero element
Bij, i, j = 1, 2, . . . , n.

A path from node vi to node vj is a sequence of edges (vi, vi1), (vi1 , vi2), . . . , (vim , vj).
A path is a cycle when i = j. A subgraph consists of a subset of vertices and of the edges
adjacent to these vertices. A subgraph is said to be strongly connected if there exists a path
from any of its nodes to any other. A subgraph is a strongly connected component if it is strongly
connected and cannot be enlarged to any other strongly connected subgraph by adding extra
nodes of the graph and the associated edges.

Clearly, each vertex may belong to exactly one strongly connected component. A strongly
connected component may consist of a single vertex or it may involve all vertices of the graph.
Thus the strongly connected components define a unique partition of a graph.

Matrix B is irreducible if and only if the associate graph is strongly connected, i.e. it
contains exactly one strongly connected component which includes all of the nodes. Then
finding the irreducible diagonal blocks of the matrix is equal to determining all of the strongly
connected components in the graph.



Examples of directed graphs are shown in Figure 1. In the first figure there are three
vertices 1, 2, 3 and four edges a, b, c, d. A matrix representation can be

B =







0 0 0
0 b 0
a c d






. (2)

A permutation given by

P =







0 1 0
0 0 1
1 0 0






. (3)

yields

P T BP =







0 0 1
1 0 0
0 1 0













0 0 0
0 b 0
a c d













0 1 0
0 0 1
1 0 0






=







d a c

0 0 0
0 0 b






, (4)

while the permutation given by

P =







0 0 1
0 1 0
1 0 0






(5)

yields

P T BP =







0 0 1
0 1 0
1 0 0













0 0 0
0 b 0
a c d













0 0 1
0 1 0
1 0 0






=







d c a

0 b 0
0 0 0






. (6)

Thus from any of these two examples of permutations we can see that B is reducible. The first
strongly connected component only includes the vertex 3 and the edge d. After omitting them
from the graph and also all the edges directed to the vertex 3, we obtain a reduced graph which
includes only two vertices 1 and 2 and one edge b. Then the second and third strongly connected
components are vertex 1 and vertex 2 with the edge b, respectively.
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Figure 1: Graph of coincidence of matrix B given by (2) (left). An example of a strongly
connected graph (right).

An algorithm for determining all of the strongly connected components is called Tarjan’s
algorithm and is described in [1]. The result of this algorithm is the symmetric permutation of
the rows and columns of a matrix such that it has a block upper triangular form with irreducible
square diagonal blocks. A decomposition of the set of vertices into the subsets belonging to the
individual strongly connected components is unique up to their order.

2 Tarjan’s algorithm

We now briefly introduce the Tarjan’s algorithm, one can see [1] for the detailed description.
Starting from some vertex it traces the paths in the graph until a cycle is found or a node is



reached with no edges leaving it. Of course, all nodes in a cycle belong to the same strongly
connected component. When a cycle without any outgoing edges is detected, all of its vertices
with the edges of the cycle and with all of the incomming edges are removed from the original
graph and they are denoted as the first strongly connected component. In a matrix notation,
after a proper symmetric permutation, these nodes correspond to the indices of the first diagonal
irreducible block. Then the algorithm continues in the same manner starting from some other
vertex of the graph. The process finishes when all of the vertices are deleted from the graph.
Then the sequence of the deleted vertices defines a permutation such that the correspondingly
symmetrically permuted matrix has an upper triangular form with irreducible diagonal blocks.

Let us notice that each nonzero off-diagonal element is inspected only once. In order to
minimize the complexity of the algorithm, two stacks are used, let us call them path-stack and
node-stack. A node is put on them both when it is newly reached and it is removed from the
path-stack but not the node-stack when backtracking takes place. With each node on the node-
stack, a pointer, called lowlink, is held to the node lowest on the stack to which a path so far
has been found. Lowlink is initialized to the node-stack position of the node itself.

The algorithm consists of a number of major and minor steps. Each major step begins
with placing some node of the graph on the path-stack and on the node-stack and it terminates
when both stacks become empty. The complexity of the algorithm is O(N) + O(τ), where N is
the dimension of the matrix and τ is the number of nonzero elements.

Two examples are shown in Figures 2 and 3. In Figure 2 a block diagonal matrix B

with the blocks of dimensions 50, 70 and 30, respectively, is symmetrically permuted. Then the
Tarjan’s algorithm is applied. It can be seen that the blocks are recovered up to their order and
up to the order of the element inside the blocks. Another example with one off-diagonal nonzero
block is introduced in Figure 3.
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Figure 2: Spy-plot in Matlab of a block diagonal matrix (first), of a random symmetric permu-
tation of its rows and columns (second) and of a result of Tarjan’s permutation (third).

3 Concluding remarks

This sophisticated algorithm is not included in any known package of programs yet, so that the
author has implemented it in an original form. The algorithm has been written in the language
of Matlab.

The speed of the algorithm increases significantly when the nonzero elements of the matrix
are stored in a unique vector and their coordinates are in an additional array. Complexity is
approximately equal to the number of nonzero elements in B. In practise, maintaining two
stacks and searching in the graph may by rather costly. Moreover, in practical examples one of
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Figure 3: Spy-plot in Matlab of a block diagonal matrix with one non-zero off-diagonal block
(first), of a random symmetric permutation of its rows and columns (second) and of a result of
Tarjan’s permutation (third).

the strongly connected components may be huge relatively to the others [2]. This is why some
modifications are incorporated in the program, e.g. considering a threshold for the entries of
the matrix.
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