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Abstract

There  is  described  an  approach  in  a  Fault  Detection  and  Isolation  by  means  of 
Markov chains in this article. After first part which is devoted to terminology of the 
FDI there is a description of the Markov chains as a strong tool for dynamic systems 
modeling with extensions to the field of the FDI.  There is  also a simple practical 
example  of  the  Markov  chains  FDI  application for  a  two tank system with  a  PI 
controller.

1 Introduction
At the end of the 20th century and the beginning of the 21st century a technical development 

tends  to  more  and  more  complex  control  systems  which  include  more  sophisticated  algorithms. 
Therefore demands, such as reliability or safeness, are still increasing in importance. An early fault 
detection and isolation can help us to avoid totally breakdown of the system and an irreparable harm. 
In less hazardous cases the fault diagnosis can improve effectiveness of the system.

2 Terminology of fault diagnosis 
A term fault has to be understood as unexpected change of the system although it needn’t be 

represented as a physical damage or a breakdown [1]. Such faults obstruct or disturb normal function 
of an automatic system. It can cause unacceptable decrease of system performance or lead to critical 
situation. A monitoring system used for the fault detection and isolation is called a fault diagnosis 
system.

The fault diagnosis system is divided into two following parts [1]. The fault detection is a two-
level decision making about a faulty state or a normal state of the system. The fault isolation is fault 
position finding such as which sensor or actuator is failed.

3 Description of dynamic systems by use of Markov chains
Complex real systems have some elements of stochastic behavior in most cases. Hence it is 

more suitable to describe these systems by the means of probability.  Then the stochastic models can 
be used for the FDI. This method is included to the group of the process history based methods i.e. the 
probability model of the system is built from the large amount of the process data.

Markov chain is probability model which has so called Markov property. The Markov property 
means that probability of a state xt is defined only by the last state xt-1 and not from the whole history 
of the stochastic process [2]. In terms of conditional probability it is
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The conditional probability  p(xt|xt-1) is called transient probability and it is possible to create 
transient matrix where rows correspond to the particular states  xt-1 and columns correspond to the 
particular states  xt. Each element of this matrix is transient probability  pij(t), i.e. it is the probability 
that the system move from the state i to the state j in the time t. 

But there is more common variant of the Markov chains for the system description where the 
transient probability  pij(t) is used for description probability of an output  yt = j when a regression 
vector is zi. The regression vector consists of a combination of actual and past inputs and past outputs. 
Such a Markov chain describes a system with a discrete inputs and outputs, but it is possible to use it 
also for continuous systems with use of discretization. Hence the Markov chains are suitable for the 
description of general linear or nonlinear systems.



We will suppose the variant of Markov chain with the input vector  vt = (vt[1],  vt[2],...,  vt[µ]) 
where each discrete input vt[j]∈ϕv[j] = {1, 2, …, Nv[j]} and only one discrete output yt∈ϕy = {1, 2, …, 
Ny}. The value of each input and output in given time is taken from the final set of values. This 
Markov chain is probability model which describes dependence of the discrete output yt on the discrete 
regression vector zt. This vector contains information about the final past history of inputs and output 
and the actual values of the inputs. It holds that
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where { }ttt v,y=D   and  D t-1 is a set of Dt from the time 0 to the time t-1.

The first task is to determine a hypothesis iH ( r,=i 1,2,... ) about structure of the Markov chain, 
i.e. to determine structure of the regression vector zt. The second task is to find relevant Markov chain 
parameters  iK, i.e. to determine the transient matrix for the given hypothesis. We will also assume 
homogeneity of  the Markov chain.  The homogenous  Markov chain has  a  time  invariant  transient 
matrix. General structure of the regression vector is
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The particular vector izt by the hypothesis iH is given by determination of values kv1,…, kvµ  and 
ky in zt and by arbitrary selection of it’s elements. After next derivations and assumptions [3] we can 
obtain a final relation for probability of yt+1 without necessity of determination of iK parameters
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where  ( )tυ,n ζi  is a number of event when yt = υ and the regression vector izt = iζ . It is possible to 
understand this  relation as  a  percentage occurrence of  the  event  when the  regression vector  iζ is 
followed by the output with value υ.

It is obvious from the previous relations that the only necessity for counting with Markov chains 
is the matrixes in(t) for r,=i 1,2,... . These matrixes are called sufficient statistics. They can be counted 
by the recurrent relation 
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for zi
ζiy ,υ ϕϕ ∈∈  where Kronecker symbol δ is defined as ( ) 1=βα,δ  for β=α and ( ) 0=βα,δ  for 

βα ≠ .

For counting of the sufficient statistics can be used method of exponential forgetting for the 
systems with slow change of parameters [3].

4 Markov chains for FDI
A basic idea of using the Markov chains for FDI is given by the regression vector made from 

suitable system variables and the Markov chain output is the fault state of the system, so called a fault 
function. This discrete function gives a number which represent a type of the fault. For example the 
normal state of the system is denoted by number 1 and the individual faults are denoted by numbers 
2,3, …, np+1. That means the system variable estimation isn’t calculated there.

For the Markov chain identification is  necessary to have sufficient amount  of  data from all 
expected system fault states and normal states. Then the sufficient statistics of the system is made 
from this data. It represents relations between the system variables and the system faults.

A basic method for the FDI by the use of Markov chains consist  of a learning stage and a 
following diagnosis stage.

The learning stage is the first. The Markov chain with a chosen regression vector is learned by 
the data from the monitored system. For good performance of the following diagnosis is necessary to 
use the data which describes all of the normal and fault system states. The value of the fault function is 
assigned to the each regression vector made from the data which has been collected in appropriate 



fault  states.  The sufficient  statistics  is  made  from these  marked  data  by Eq.  (5)  and  it  describes 
monitored system from the FDI point of view.

When the learning stage is completed the FDI system is switched to the diagnosis mode. The 
regression  vector  is  made  form  the  on-line  measured  system  data.  The  output  of  the  FDI  is  a 
probability distribution of all previously identified system faults and the normal state by Eq. (4). This 
information is then given to an operator or a supervision system.

The next method is a real-time fault diagnosis with supervised training [4]. This approach can 
be used without previously collected system data directly with the running system. The Markov chain 
is  learned  by  orders  of  the  supervisor  simultaneously  with  the  fault  diagnosis  by  use  of  actual 
knowledge about the system faults. 

However  the  difference  between  these  approaches  is  mostly  in  implementation  of  a  user 
interface. The Markov chain is used in the same way for the both methods.  It  is also possible to 
combine these ones.

The main advantage of the FDI by use of the Markov chains is easy using with linear as well as 
nonlinear systems.   The main  drawback is  a large volume of the sufficient  statistics for  complex 
systems.

5 Illustrative example
A two tank system with a PI controller is chosen as an example of the FDI by use of the Markov 

chains Fig. 1. A controlled value is a water level in the second tank. It is controlled by the PI controller 
by the first (input) valve q1. 

Figure 1: Two tank system with PI controller

The values of the system parameters are in relative form. For example the water levels x1 and x2 

are related to the water level in a water source h0=10m, etc.

The FDI algorithm was built by the principles of learning and following diagnosis method. In 
the learning stage the number of occurrence of the given regression vector is put to the sufficient 
statistics. The rows denote values of the regression vectors and the columns denote values of the fault 
function. If the algorithm finds a new regression vector, one row is added to the sufficient statistics 
matrix  and a number  one is  put  to the appropriate column.  Then the transfer  matrix between the 
regression vector and the fault variable is computed.

In the diagnosis stage the actual regression vector is compared with the vectors in the sufficient 
statistics. An output of the FDI is the row of the transfer matrix corresponding with the vector which is 
closest to the actual vector. The probability distribution of the fault function is given by this row.

Very important for the proper function of the algorithm is a choice of the regression vector. 
There are chosen the discretized values of the water level in the first tank, the water level in the second 
tank and the actuator output in our example. These values are discretized and normalized by a linear 



division of their ranges to 100 values from 0 to 99. The algorithm counting period is T=0.1s. The form 
of regression vector is
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There are chosen two fault states. The first fault is decrease of the second valve opening from 
the value u2=0.9 to the value u2=0.75 and the second fault decrease of the second valve opening from 
the value  u3=0.251 to the value  u3=0.2. The PI controller is designed to work well in the case of 
occurrence of these faults. The set point of the second tank water level is changed in the interval 
wx2=〈0.03, 0.04〉. It is necessary for the FDI to be able to recognize the fault state for the different set 
points.

The learning stage was performed at first. The fault variables are fp=1 for normal state, fp=2 for 
the decrease of the second valve opening and fp=3 for the decrease of the third valve opening. Each 
state of the system was learned for the time period 1200s with the random change of the set-point with 
period 200s. After the learning the diagnosis was performed. There were repeated the three system 
states with the period of change 600s for each state with the random change of the set-point with 
period 200s. The diagnosis stage is depicted on (Fig. 2, Fig. 3, Fig. 4 and Fig. 5).

Figure 2: Valves opening during the diagnosis Figure 3: Water levels and the set point during the 
diagnosis

Figure 4: Discretized and normalized system 
variables during the diagnosis

Figure 5: Probability distribution of the fault 
function (output of the FDI) during the diagnosis

It is obvious from the Fig.  5 that the FDI algorithm performed the fault diagnosis very well. 
Only in two short time sections about 3800s and 5000s the state was wrongly recognized. But it is 
possible to replace this event for example with using of a logical filter to some minimal time interval 
of the fault state before an alarm is used.



6 Conclusion
The FDI is a still expanding branch of automatic control which is used not only for special 

systems but also for common appliances in these days. There was described the stochastic approach to 
the systems in this article. The using of the Markov chains is a good and simple method for the FDI 
and it is possible to use them for linear as well as nonlinear systems. The more extensive information 
about this approach can be found in [4] and [5].
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