
USING DCT/DCE IN PARALLEL ROTOR COMPUTATIONS

O. Jakl, T. Musil

Institute of Geonics, Czech Academy of Sci. & VŠB – Technical University Ostrava

Abstract

Four years ago, The MathWorks, the producer of Matlab, fulfilled the wishes
of many users and released the first version of the DCT/DCE tools enhancing
Matlab’s capabilities towards parallel processing, to take advantage of the mod-
ern multiprocessor/multicore computer architectures. We followed DCT/DCE’s
development, investigated this computing environment from the point of view of
the “classical” parallel programming and took advantage of it in a set of Matlab
codes for modelling of nonlinear dynamics of rotors. This paper1 summarizes
our (throughout positive) experience.

1 Introduction

Matlab [1] since its introduction in the seventies has developed to a mighty general-purpose
mathematical solver with many add-on capabilities and toolboxes, which effectively finds a con-
tinuously growing number of applications in all fields of science and technology. The users,
stretching nowadays far beyond the mathematical community, appreciate that it is rich of
features, efficient, user friendly, extensible, multiplatform, continuously developing, etc., etc.
Moreover, Matlab gains new clientele also among the users of traditional languages such as C
or Fortran, who change to it to reduce the application development cycle and get acceptable
performance of the resulting code in most cases.

However, those users that wanted to take advantage of Matlab for the implementation
of really demanding numerical algorithms, have been missing one important feature in it: the
support for parallel processing. For demanding computations, parallel processing is namely
imperative nowadays. It was as late as in 1995, when Cleve Moler, the author of the first
version of Matlab and the chief scientist at The MathWorks, argued against parallel processing
in Matlab in [4]. But its users had different opinion — there were many attempts to enrich
Matlab with some form of parallel processing without support of The MathWorks. [6] mentions
27 projects of this kind in 2003.

The development in IT promoting parallelism of many forms made The Mathworks to
change its negative standpoint (see Cleve Moler’s explanation in [5]) and to accelerate the
development of “parallel Matlab” of its own. It appeared in 2004 and represents a border stone
in Matlab’s history.

We believe that in deserves much more attention also in the Technical Computing Prague
conference series, where, to our best knowledge, so far only one contribution [9] appeared in the
past.

2 On the Development of Parallel Matlab

The MathWorks’ parallel Matlab appeared in 2004 in form of two products: Distributed Com-
puting Toolbox (DCT) [2] and Distributed Computing Engine (DCE) [3]. DCT is a toolbox that
adds new constructs to the Matlab’s C-like scripting programming language to provide parallel
functionality. DCE, a parallel run-time environment, provides the backend (behind-the-scenes)
support for the DCT on larger parallel systems and is quite transparent to users.

1We acknowledge support of the projects FRVŠ 1720/2008 and AV ČR S3086102.



Version 1 of DCT/DCE let you develop just coarse-grained parallel algorithms, which give
rise to independent tasks without mutual interaction. This (in Matlab’s somewhat mislead-
ing terms) “distributed” computing model follows in fact the manager-worker task-scheduling
scheme and is suitable for embarrassingly/perfectly parallel problems only, the concurrent work-
ers of which are not allowed to change data during the computation: They can only return their
partial results to the master.

Since this initial release, The Mathworks is strongly pushing forward the development of
DCT/DCE, resulting in a sequence of new version with substantial improvements released every
year.2

The most important novelty came with DCT/DCE version 2 in 2005: The support for
explicit communication among interdependent tasks, taking advantage of the industry-standard
Message Passing Interface (MPI) [7]. Functions for send, receive, broadcast, barrier, and probe
operations are available in the toolbox. This makes DCT/DCE to a message passing system and
allows to develop true parallel applications based on the general message passing model without
substantial restrictions. Although those users, who are familiar with MPI, might miss some ad-
vanced features of its rich suite of message-passing routines, DCT provides a reasonable abstract
of complex details, which makes them easy to use, just in the spirit of Matlab programming,
clearly characterized by Cleve Moller’s “Think matrices, not messages”. There are other benefits
of this approach, e.g. the deadlock detection capability helps timely identification of mismatched
send-receive calls, potentially saving time that would be spent on these hard-to-debug problems.

Version 3 of 2006 presented additional interesting parallel constructs, distributed arrays
and the parfor loop, where one can recognize strong motivation from the so called data parallel
approach typical for e.g. High Performance Fortran (HPF).3

In fact, The MathWorks recommends using these higher-level constructs for easy-to-
understand, maintainable code, whereas the low-level message passing functions are meant for
finer control over the parallelization scheme. Note that while using these functions, the pro-
grammer bears the responsibility of managing the synchronization between concurrent sections
of his code.

From the user’s budget point of view the good news is, that since version 3.1 (2007) one
can make use of up to four processors/cores of a symmetric multiprocessor machine without
purchasing the rather expensive DCE licence.

After completing the portfolio of the main parallelization constructs in DCT, The Math-
Works returned to the improve the API in recent versions (parallel profiler, administration GUI,
configurations manager, etc.). Moreover, as a tax for rapid development, some corrections in the
language had to be made, e.g. the parfor loop was modified in syntax and semantics, which may
enforce modifications of older codes. And finally, since version 3.3, the parallel Matlab changed
its somewhat misleading name: DCT to Parallel Computing Toolbox and DCE to Distributed
Computing Server. From pragmatic reasons, we shall continue to use the original names in this
article.

3 Parallel Matlab in Rotor Computations

Our concrete experience with DCT/DCE arises primarily from an application in computations
of nonlinear dynamics of rotors. See [8] for more informations on the physical and mathematical
background.

2This can be demonstrated on the size of the DCT manual: Version 2.0 (2005) – 224 pages, version 3.0 (2006)
– 374 pages, Version 3.2 (2007) – 487 pages.

3Interestingly, HPF was not a very successful programming language.



3.1 Modelling of the Dynamics of Rotors

The study of dynamics of rotors with journal bearings is very important because the majority
of high performance industrial rotating machinery is supported by this kind of bearings, thanks
to their high capacity and damping and low friction dissipation. On the other hand, poorly
designed journal bearings tend to be unstable — they can collapse without any previous sign of
failure and cause serious damage of the whole machine.

From the point of view of mechanics, journal bearings introduce a strong local non-linearity
into the computational model of the rotor system as these bearings are usually incorporated
by means of non-linear force couplings. It is necessary to know the pressure distribution in the
bearings to determine the components of the coupling vector. The pressure function is described
by an elliptical partial differential equation together with appropriate boundary conditions. In
the literature, this equation is reffered to as the Reynolds equation and its analytical solution is
known for some special cases only.

The computational model of the rotor itself, see Fig. 1, is typically discretized into a few
dozens of finite elements, which incorporate the influence of the inertia and gyroscopic effects.
The shaft is represented by a beam-like body and external and viscous damping can be also
included. The wheels are commonly supposed to be thin axisymmetric rigid bodies.

Figure 1: A model of a rotor with four bearings

For testing purposes, how developed algorithms reacts on increasing computational load,
the model rotor is subsequently supported by two, three and four identical journal bearings.

The numerical solution of the Reynolds equation and of the subsequent numerical inte-
gration of the pressure function is a computationally demanding procedure. Profiling of the
(sequential) algorithm revealed that the total execution time of the matrix operations is in-
significant compared to the time needed for the repeated solution of the Reynolds equation.
This is the reason for the long execution times — not the “large” system of algebraic equations
arising from the discretization of the rotor assembly. In this situation, parallel processing might
be the proper way how to shorten the computation.

The basis analyses made on nonlinear rotor systems include (1) calculation of the equilib-
rium position and evaluation of its stability, (2) determination of the response of the system on
periodic or harmonic excitation and (3) stability assessment of periodic steady-state response.
We have developed and implemented parallel algrithms for all those computations, but for the
demonstration of DCT let us describe just the last one in more detail.

3.2 Calculating the Steady-state Response on Periodic Excitation

If the steady-state response of rotors on periodic excitation needs to calculated, it is appropriate
to use some of the approximate methods. Among these, the trigonometric collocation method,



which the steady-state response approximates by a finite number of terms of Fourier series,
is very efficient. The determination of the response is transformed to the solution of a set of
non-linear algebraic equations, of order that is proportional to the number of the bearings’
parameters and the terms in the Fourier series, and the Newton-Raphson’s method was applied.

Since the pressure distribution in a bearing depends only on displacements and velocities
of the shaft at the bearing, the components of the coupling vector can be evaluated concurrently,
without any mutual dependency, in an embarrassingly parallel computation. The calculation
of hydraulical bearing forces in one bearing (or in a group of bearings) can be chosen as one
unit of parallel processing. This fact can be easily made use of e.g. when Jacobi matrix is to be
assembled (expensive operation).

3.3 Look and Feel of Matlab Parallel Programming

Matlab’s parallel job is based on a single task (code) several instances of which run simulta-
neously as labs (in Matlab’s notation) on the computational nodes (processors) of a parallel
machine, processing different data. The parallel job is typically initialized by a sequence sim-
ilar to that in Fig. 2. This code contains the whole life cycle of the parallel job, and it is
the only part of code that runs on a client session. It includes finding parallel computing re-
sources (findResource), provided by DCE, creating the parallel job (createParallelJob) and
setting its properties, specifying the task (createTask) and its code (par kolokace), submit-
ting the job (submit), waiting for its completion (waitForState) and collecting the results
(getAllOutputArguments).

JobManager=findResource(’scheduler’,’type’,’jobmanager’);

ParJob=createParallelJob(JobManager,’Name’,’kolokace2b’);

set(ParJob,’MaximumNumberOfWorkers’,nlabs)

set(ParJob,’MinimumNumberOfWorkers’,nlabs)

p={’/home/parallel_kolokace’,’\\pck\home\parallel_kolokace’};

set(ParJob,’PathDependencies’,p)

ParTask=createTask(ParJob,@par_kolokace,3,{M,B,G,K,KC,fst});

submit(ParJob)

waitForState(ParJob,’finished’)

results=getAllOutputArguments(ParJob);

destroy(ParJob)

Figure 2: Life cycle of a parallel job

The code of the (single) task has to contain the functionality of all labs. The differentiation
as achieved via the labindex function (returns the unique number of the lab), as shown in Fig. 3.
Here, if the number of labs is greater than two, then lab 1 acts as the master process and the
other labs are slave processes.

function [x0,xc,xs]=par_kolokace(M,B,G,K,KC,fst)

if numlabs==1 % only 1 lab available - sequential code

[x0,xc,xs]=kolokace(M,B,G,K,KC,fst);

else % more than 1 lab available - parallel code

if labindex==1 % master process

[x0,xc,xs]=parallel_kolokace(M,B,G,K,KC,fst);

labSend(1,2:numlabs) % message "Job is finished"

else % slave processes

parallel_slozky_sily();

% all labs have to send results

x0=’x0’; xc=’xc’; xs=’xs’;

end

end
Figure 3: Handling lab numbers

In Fig. 4 the code executed by the slave process is shown. The slaves communicate with
the master by means of message passing functions – labSend labReceive, with the lab numbers



of the recipient or sender as arguments. In a loop, the slaves get a portion of data from the
master, process it and return the results back. Unfortunately, the corresponding code of the
master process is much more complicated and from space reasons it cannot be included in this
paper.

function []=parallel_slozky_sily()

data_out=cell(1,1); % initialisation of output

data_in=labReceive(1); % receive message from master

while size(data_in,2)>1 % until "Job is finished" arrives do

% calculate bearing forces

[Ploz]=tlakova_fce_sym(data_in{1,1},data_in{1,2});

[data_out{1,1}]=slozky_sily(Ploz,data_in{1,4});

labSend(data_out,1) % send results to master

data_in=labReceive(1); % receive message from master

end

Figure 4: Fragment of the slave code

3.4 Good Performance

We run the steady-state response code in the Matlab DCT/DCE 3 parallel environment on a
Beowulf cluster (8 identical computing nodes with AMD Athlon 1.4 GHz CPU, 1.2 GB RAM
each, Fast Ethernet interconnect) and on a symmetric multiprocessor (2 dual-core AMD Opteron
2.4 GHz CPU’s, 4 GB shared RAM). Fig. 5 shows nearly ideal (linear) speed-up4 which we
could achieve on both platforms, when employing increasing number of processing units. The
performance was nearly independent of the number of bearings involved in the mathematical
model of the rotor.

1 2 3 4 5 6 7 8

0

1

2

3

4

5

6

7

8

2 bearings

3 bearings

4 bearings

perfect speedup

CPU [ -]

S
p

e
e

d
u

p
[-

]

1 2 3 4

0

0,5

1

1,5

2

2,5

3

3,5

4

2 bearings

3 bearings

4 bearings

perfect speedup

CPU [ -]

S
p

e
e

d
u

p
[-

]

Figure 5: Speed-ups achieved on a cluster (left) and symmetric multiprocessor (right)

Without going into details, let us note that it is even easier to write a Matlab’s “dis-
tributed” variant of this embarrassingly parallel algorithm, without explicit message passing (cf.
Section 2). However, in our case this code suffered form the overhead of the repeated creating
and destroying distributed jobs and was slower, probably because DCE has to test the status of
all computational nodes of a parallel computer.

4 Conclusions

Although The Mathworks somewhat “hesitated” with introducing parallelism into Matlab, they
finally completed a very good work. The Matlab engineers did their best to design the paral-
lelization API in a Matlab-like, i.e. very user-friendly manner (including peculiar terminology).

4Efficiency about 90 %



As far as it is in parallel processing possible, black box solutions are provided for inexperienced
users, whereas experts can e.g. make use of message passing almost in the same way as in the
native message passing systems (MPI). Thus, Parallel Matlab (DCT/DCE) is an ideal environ-
ment for a smooth transition to the world of parallel scientific computing, especially for current
Matlab users. In our application, thanks it its parallelization in Matlab we were able to reduce
its execution time to a fraction of the sequential version.

References

[1] Matlab product page. http://www.mathworks.com/products/matlab

[2] Distributed/parallel Computing Toolbox product page.
http://www.mathworks.com/products/parallel-computing

[3] Distributed Computing Environment/Server product page.
http://www.mathworks.com/products/distriben

[4] Moler, C.: Why there isn’t a parallel MATLAB. The MathWorks News & Notes, Spring
1995.
http://www.mathworks.com/company/newsletters/news notes/pdf/spr95cleve.pdf

[5] Moler, C.: Parallel MATLAB: Multiple Processors and Multiple Cores. The MathWorks
News & Notes, June 2007.
http://www.mathworks.com/company/newsletters/news notes/june07/clevescorner.html

[6] Choy, R., Edelman, A.: Parallel MATLAB: Doing it Right . Massachusetts Institute of
Technology, Cambridge, MA 02139. November 15, 2003.

[7] MPI Formum WWW page. http://www.mpi-forum.org

[8] Musil, T., Jakl, O.: Parallel algorithm of trigonometric collocation method in nonlinear
dynamics of rotors. Applied and Computational Mechanics, Volume 1, Number 2, ZČU
Plzeň, 2007, pp. 555-564.

[9] Krupa, J., Pavelka, A., O. Vyšata, O., Procházka, A.: Distributed Signal Processing. In:
Proceedings of the conference Technical Computing Prague 2007, Humusoft, Praha, 2007,
p. 81.

Ondřej Jakl
Institute of Geonics, Academy of Sciences of the CR
Studentská 1768, 708 00 Ostrava – Poruba
E-mail: jakl@ugn.cas.cz

Tomáš Musil
Department of Mechanics, VŠB–TU
17. listopadu 15, 708 33 Ostrava – Poruba
E-mail: tomas.musil.fs@vsb.cz


