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1. Introduction 
The evaluation of derivatives from discrete experimental data is a common problem which occurs 

in experimental mechanics. The numerical differentiation process is ill-conditioned and strongly 
influenced by the data discretization and noise. The problem of approximating the gradient of a function 
of  two variables when noisy data are given involve data smoothing by means of splines and local or 
global differencing.  

We use a non-contacting optical technique, the digital image correlation, for measurements of 
surface deformation of planar objects. We determine coordinates of grid points marked at the surface 
from experimental data. It is necessary to differentiate numerically the coordinates of the deformed grid 
with respect to reference coordinates in order to evaluate strains.  

In this paper, we discuss some techniques for the estimation of derivatives in a domain of arbitrary 
boundary containing holes, cracks or other local concentrators of strains. We develop a scheme for global 
and local approximation methods, and illustrate the estimation of the derivatives in a complex sample. 

The outline of this paper is as follows. In Section 2, we present some mechanical basic equations 
and a procedure involving interpolation, extrapolation and smoothing data. Then in Section 3 we show 
estimated strain results of a plane deformed plate consisting of a hole and a crack by available functions 
in Matlab software. Finally, Section 4 shall give some conclusions. 

 

2. Fundamental theories 

2.1. Mechanical constitutive equations 

 A material point within the body in the reference configuration identified by the position vector X 
occupies the position x = χ(X) in the spatial (or deformed) configuration. The function χ describes the 
static deformation of the body and is a one-to-one, orientation-preserving mapping with suitable 
regularity properties. The deformation gradient tensor F is defined by 

     χGrad=F       (1) 

where Grad is the gradient operator with respect to X. The Cartesian components of F are given by 
ij i jF x X= ∂ ∂ , where Xi and xi, i = 1,2,3, are the Cartesian components of X and x, respectively. 

 The right Cauchy-Green tensor is given by 

     FFC T=       (2) 

 and the Green-Lagrange strain tensor is calculated from  

     ( )ICE −=
2
1

      (3) 

where I is the identity tensor. For full details we refer to Holzapfel (2000). 



2.2. Methods of numerical evaluation of derivatives 

 The main task is to find the best approximate functions of the spatial coordinates x and y 
depending on the reference coordinates (X,Y) in such a way that the loss of accuracy is minimal and the 
smoothness of the result is maximal. We deduce to solve the same problem that it evaluates a fitting 
surface from one set of N discontinuous given data points 

     ( ), ii i iz f X Y z= ≈      (4) 

where iz is the i-th measured data value corresponding to a position point (Xi,Yi) and f is an unknown 

bivariate function estimated from ( ), minii i
i

f X Y z− =∑  in the least-square sense.  

 A fitting function is interpolated through the data points locally, as for a running window. A local 
method approximates the function f(X,Y) in sub-domain, and does not yield information beyond it 
boundary. This means especially, that there can be jumps in the approximated function between different 
points. 

 Suppose that f is represented by a regular grid of coefficients, given by a vector u, over a local 
region containing the points (Xi,Yi). These coefficients may be a regular grid of values of the unknown 
function f. More generally they denote coefficients of a finite element representation of f. In the interests 
of computational efficiency, these elements normally have minimal local support, such as bilinear or 
biquadratic polynomials. Using such representations, the vector of function values f(Xi,Yi) may be written 
as P.u where P is a N×M matrix, N is a number data points in the local and M depends on an order of the 
chosen polynomial. An approximation to the data in equation (4) may then be determined by finding the 
vector u that 

min2 →− zPu      (5) 

where T
n21 ]z,...,z,z[=z  is a known value vector consisting of a set of measured data points in the 

local domain. 

Interpolation in local domain 

The bilinear or biquadratic polynomials are used in estimations, respectively, as follows 

( ) ybxaay,xf 1101 ++=       (6-a) 

( ) xycybxaybxaay,xf 2
2

2
2

21102 +++++=    (6-b) 

therefore P and u are in a matrix form as 
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T
1101 ]b,a,a[=u   T

2221102 ]c,b,a,b,a,a[=u     (7-b) 

To determine the deformation tensor F in (1), we deduce to define a partial differentiation of f with 
respect to x and y, fx and fy, hence 



uPuP
xx xx

ff =
∂
∂=

∂
∂=      (8-a) 

uPuP
yy yy
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∂
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where components of Px and Py are expressed specifically as 
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Local domains can be chosen as square elements including 9, 16, 25,… data points, see in Fig.1. 
Estimated results take out only to points inside the element corresponding to red points. 

 

 

 

 

 

 

 

Note that when the bilinear polynomial is chosen the estimated 
strains in local are constant and for the chosen biquadratic polynomial 
the strains obtain as be linear. 

 

Extrapolation to boundaries 

After applying the interpolation method for points inside the 
domain, our next task uses an extrapolation method to extend 
estimated values of points on the boundaries. Available neighbor 
points are found by a window which starts at the evaluating point and 
expands around. This estimation is also based on fitting a chosen 
polynomial. 

N=9 

N=16

N=25 
Fig.1 Estimated element types

Fig.2 Extrapolation scheme



Smoothing by Moving average 

A moving average method smooths data by replacing each data point with the average of the 
neighboring data points defined within the spans. The smoothing process is given by the equation 

( ) ( )( ) ( )∑ ∑
−= −=

++
++

=
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1N1N
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where zsm(i,j) is the smoothed value for the data point (i,j), Nx and Ny are the number of neighboring data 
points on either side of zsm(i,j) in the axis x and the axis y. 

 

3. Numerical results 

In this section we will show step by step results 
obtained by application of interpolation, extrapolation 
and smoothing methods mentioned above to 
experimental data processing of a deformed plate 
containing a hole and a crack (Fig.3). 

First, the interpolation in local domain is 
effectuated to find the most suitable coefficients by 
solving eq. (5).   

  zPu \=   

This procedure is repeated for every data point, 
alike for a moving window and the partial 
differentiation components are calculated by eqs. (8) and (9), so that the deformation gradient tensor F is 
achieved. The right Cauchy-Green tensor and the component strains are therefore obtained too in eqs. (2) 
and (3). 

The strain components are estimated by applying the interpolation method in local domain, 
represented as in Fig. 4. 

 
 

Since the lack informat
boundaries is not estimated b
is necessary to use an extrap

Fig.3 Undeformed and deformed models 

F  
ig.4 Interpolate strain components in local
ion supporting of neighbor points that almost strains at points lying near the 
y the interpolation method, this is also manifested in obtained result areas. It 
olation method to expand available strain values to the full domain. The 



distribution of achieved strains in the full domain by applying the extrapolation method is displayed in 2 
types: surfaces and contour lines, as in Fig.5. 

 

 

 
 

From rough results obtained in local estimation it indicates that there exist jumps in the 
approximated functions between different points. So we need to do a final process as smooth data 
points by moving average method. The smoothing results are presented in Fig.6. 

Fig.5 Strains obtained by extrapolation method 



 

 

 

 
 
The obtained results by th

strain components stand out e
experiment. 

 

F  
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e moving average method is satisfactory and smoother, the distribution of 
ach region manifestly in accordance with an observation from the 



Illustration of estimation errors and the max and/or min jumps of strains by using different element 
models and polynomials are summarized and listed in Tables 1, 2. The apparent quantities show that an 
increasing order of approximated functions reduces the jumps, and an increasing element size attaches to 
cut down the magnitude of concentration strains. 

 
Table 1 – Estimation errors when approximated bilinear polynomial 

N ∑ 2x∆  ∑ 2y∆  maxmin/xε  
[*10-2] 

maxmin/yε  

[*10-2] 
maxmin/xyε  

[*10-2] maxxε∆  
maxyε∆  

maxxyε∆

9 0,0313 0,0367 -5,08/2,78 -0,34/23,92 -7,20/8,38 0,0296 0,0748 0,1024 

16 0,0441 0,0516 -4,70/1,77 -0,06/22,88 -5,90/7,35 0,0380 0,1313 0,0477 

25 0,0590 0,0763 -3,44/1,84 0/25,44 -5,00/6,25 0,0296 0,1799 0,1053 
 
Table 2 – Estimation errors when approximated biquadratic polynomial 

N ∑ 2x∆  ∑ 2y∆  maxmin/xε  
[*10-2] 

maxmin/yε  

[*10-2] 
maxmin/xyε  

[*10-2] maxxε∆  
maxyε∆  

maxxyε∆

9 0,0028 0,0035 -3,78/2,07 -0,14/17,69 -6,14/6,62 0,0222 0,0627 0,0358 

16 0,0177 0,0211 -5,07/3,56 -0,30/29,63 -5,95/6,44 0,0218 0,1384 0,0424 

25 0,0289 0,0428 -5,27/2,80 -0,1/30,42 -6,09/7,71 0,0301 0,2194 0,0532 

Finally a comparison the different strain components before and after applying a smoothing by 
moving average method is also shown in Table 3. The increasing smooth simultaneously goes with the 
decreasing maximal and minimal strains it means that the concentration of strains is disappeared 
gradually. 
 
Table 3 – The maximal and minimal values of strains and their maximum local differences after 
smoothing with spans [3,3], [5,5], [7,7] and [9,9] 

Spans 
maxmin/xε  

[*10-2] 
maxmin/yε  

[*10-2] 
maxmin/xyε  

[*10-2] maxxε∆  
maxyε∆  

maxxyε∆

[3,3] -3.48/1.72 -0.05/13.86 -4.88/5.53 0.0348 0.1386 0.0467 

[5,5] -3.15/1,67 -0.05/13.29 -4.23/4.92 0.0315 0.1328 0.0467 

[7,7] -2.78/1.67 -0.05/12.72 -3.75/4.92 0.0278 0.1225 0.0467 

[9,9] -2.51/1.67 -0.05/12.35 -3.75/4.92 0.0251 0.1178 0.0467 

 

 

 



4. Conclusion 
The estimation of component strains from measured coordinates in an arbitrary 2-D domain is 

presented we find that rough estimates in local method work acceptably well. The distribution of the 
strains is smoother by applying moving average. However it is necessary to use the smooth method 
carefully since it can increase errors and cut down the extreme local values. The obtained results are 
satisfactory and in accordance with an observation from the experiment. 
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