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Abstract 

The cluster analysis represents a group of methods whose aim is to classify the 

investigated objects into clusters. There have been suggested many new algorithms 

recently. This article deals with the use of an advanced method of neural network 

represented by Kohonen self-organizing maps for cluster analysis and describes its 

basis. The software Matlab 7.1 was used to present the applications of this method. 

We mention its possible use in economics and two case studies are discussed as well. 

1 Introduction 

The cluster analysis represents a group of methods whose aim is to classify the investigated 
objects into clusters. The founders of cluster analysis were Tryon, Ward and James. There have been 
suggested many new algorithms recently. Some methods represent a modification of classical methods 
of cluster analysis; other ones use advanced methods such as neural networks, e.g. represented by 
Kohonen self-organizing maps, or genetic algorithms. 

The aim of cluster analysis is to classify the objects into clusters, especially in such a way that 
two objects of the same cluster are more similar than the objects of other clusters. The objects can be 
of various characteristics. It is possible to cluster animals, plants, text documents, economic data etc. 

2 Cluster analysis and Kohonen neural network 

It is possible to use the neural network with so called unsupervised learning for cluster analysis 
that is based on evaluation of the difference (distance) of the weighted vector w  of the neural  
network from the vector of input pattern x  and search of neuron, whose weighted coefficient have the 
minimum distance of w  from x . This neuron, which won among the neurons of the network, has the 
right to adjust its weights and the weights of neurons in its surroundings and thus the response on 
submitted learning pattern to better value. After submitting of a further learning pattern it can win 
another neuron of the net that can adjust its weights and the weights of neurons in its surroundings and 
thus to increase better answer etc. The clusters are thus created in the net that in certain places of the 
network optimally respond to certain symptoms of submitted patterns, as well as unknown patterns. 
The “map” of patterns is created. This network was presented by Kohonen in 1982 and it is called 
Kohonen self organizing map. The schema of this network is presented in the Figure 1. 

The network contains n  distributing nodes that are fed by single components of the vector of 

input pattern ( )T
npipppp xxxx ,,,,, 21 KK=x  and N  efficient neurons distributed on imaginary 

surface (one-layer network), for example on the surface of specific configuration such as rectangular 
structure, where the efficient neurons are found in individual crossing lines of the rectangular structure 
(there are used other structures, such as  with glory in efficient neuron using other structure, such as 
hexagon). The neurons have among themselves the bindings, so that it is possible to define the 
surroundings of each neuron. Further, it is possible to think over lateral activity of neuron on the 
neighbouring neurons according to the rule: the nearest surroundings are represented by exciting 
bindings and further surroundings by inhibitive bindings. The action of the i -th component ix  on the 

j -th neuron is done by weight coefficient jiw  (real value). The weight vector of the j -th neuron is 

( )T
jnjjj www ,,, 21 K=w . 

The input vector (for the p -th input pattern) has the form 

( )T
npppp xxx ,,, 21 K=x . 

 



It is calculated for each neuron its distance jD  (of the vector jw  from the vector px ) as an 

Euclidean distance  

( ) pjpjjD xwxw −=,   

or as a spherical distance 
( )

pjpjjD xwxw ∗−= 1, . 

For the evaluation of jD  is used the formula 
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, where Nj ,,1K= . 

The competition of neuron consists in the fact that the neuron is found, that has the weighted 
coefficients with the smallest distance from values of relevant components of the vector px . This 

neuron is considered to be a winner and it obtains the right of the biggest response 1=jCy  and 

adjusts its weights according to the formula 
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where α is so called learning constant for which applies 10 <<α .  

For the winning neuron it applies 1== jcj yy , then 

( ) p

old

j

new

j xww αα +−= 1   

and for the loosing neurons it applies 0=jy  and the weight coefficients are not changed with the 

exception of neurons in a defined surroundings of the winning neuron. Their weights are corrected in a 
specific way (for example by the same way like for winning neuron). 

The surroundings cNE of the winning neuron is a set of neurons inside the bounded area (for 

example of a square or (because the circle is an ideal area) the hexagon is used that approximate the 
circle) around the winning neuron. See Figure 2 or Figure 3, respectively. 
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Figure 1: Sample schema of the Kohonen network 



The radius of surroundings CR  is given by the number of neurons in the surroundings on one 

side from the winning neuron (for example the radius of square surroundings can be 2=CR  and  for 

hexagon 1=CR ). The index C  represents the winning neuron. 

 

Figure 2: Square surroundings of the winning 
neuron, 2=CR  

 

Figure 3: Hexagon surroundings of winning 
neuron, 1=CR

Probably some other neuron wins when the next learning pattern is set to the input. The process 
of adjusting of output level of signal, the values of the weight coefficients and surroundings of the new 
winning neuron is analogue to the first example. The weights of individual neurons are adjusted by 
consecutive feed of all learning patterns in such a way that certain types of input patterns initiate the 
neurons in certain places of the network. The neurons are clustered on certain patterns of signals in 
certain places of network, it is called the map of patterns. When the whole set of learning patterns is 
used for learning, the network is learned to respond correctly on searched patterns and to distinguish 
them. For a finer adjustment of the weights it is used the principle of narrowing of the surroundings as 
well as the downsizing of the value of learning constant. The network is learned in case when further 
pattern do not change the weight coefficients. 

The algorithm of learning of the neural network is as follows: 

1) Set up of the number of input variables n  according to the structure of input pattern and 
determination of a number N  of efficient neurons  according to condition: 

( )NNL log4/≤  where L  is the number of patterns to be recognized by net. 

2) Set up of initial values that are selected as random values in the range 5.0;5.0− . 

3) Set up of the shape and radius of initial environs of  winning neuron ( )0tNE , at first it is 

greater, major, then it is decreased step by step to be ( ) 1=tRC . 

4) The use of the first learning pattern 1x  and foundation of the winning neuron is done in 

such a way, that the Euclidean distance of its weighted vector jw  from 1x  is the smallest. 

The calculation is done according to the formula 

 ( ) ( )( ) min
1

2
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The ideal case is the situation when 0min →j
j
D . 

5) The adaptation of weighted coefficients is done according to the formula 
( ) ( ) ( ) ( )( )twtxttwtw jiijiji −+=+ )(1 α  , for ( )tNEj C∈  

and 
( ) ( )twtw jiji =+1 , for  ( )tNEj C∉ . 



The teaching is done so long, until the weighted coefficients do not change if random pattern 
from the collection of learning patterns is used. For further details see [1], [2], [3] and [5]. 

3 Case studies 

The above discussed theoretical results will be applied in this chapter for solving practical 
problems. We present here two case studies devoted to searching of optimal location of distribution 
centers and to clustering of real estates, respectively. We use software Matlab 7.1 and its Neural 
Network toolbox to  prepare software applications that can be used to solve these types of problems. 

3.1 Optimal locations of distribution centers 

The input data are represented by coordinates 1x , 2x ,..., kx  that characterize the objects. It is 

possible to define any number of clusters. The aim is to minimize the sum of squares of distances 
between the objects (customers) and centroids (distribution centres). The coordinates of centroids 

1cx , 2cx ,..., ckx  are changed. The calculation assigns the objects to their centroids. The whole learning 

process is repeated until the specified number of learning epochs is reached. The process of learning 
ensures that the defined coordinates 1x , 2x ,..., kx  of objects and assigned coordinates 1cx , 2cx ,..., ckx  

of clusters have small distances if adequate value of Kohonen parameter is used (in our case 0.1). 

Input data for a three-dimensional task are represented by 14 objects with 1x , 2x  and 3x  

coordinates (see  Table 1). The input data are in an MS Excel format file ShNN3.xls.  

Table 1: COORDINATES OF OBJECTS (SHNN3.XLS) 

Object Coordinates of objects 

Number x1 x2 x3 
1 0,00 0,16 0,16 
2 0,34 0,00 0,00 
3 0,39 0,26 0,26 
4 0,35 0,49 0,49 
5 0,50 0,36 0,36 
6 0,46 0,48 0,48 
7 0,51 0,83 0,83 
8 0,52 0,99 0,52 
9 0,66 0,36 0,66 
10 0,81 0,61 0,81 
11 0,64 0,95 0,64 
12 0,85 1,00 0,85 
13 0,93 0,98 0,93 
14 1,00 0,56 1,00 

The program is started by command NNNN1 in MATLAB (for source code see File 1).  The 
user may choose an arbitrary number of distribution centers and number of learning epochs (e.g. 3 
clusters and 40 learning epochs). 

clear all; 
P=(xlsread('ShNN3','Locations'))'; 
num=input('Set the number of distribution centers:'); 
epochs=input('Set the number of epochs:'); 
net=newc([0 1; 0 1; 0 1],num,0.1); 
net.trainParam.epochs = 1; 
for k=1:epochs 
    net = train(net,P); 
    w = net.IW{1}; 
    stem3(w(:,1),w(:,2),w(:,3),'sr','MarkerFaceColor','b','MarkerSize',10) 
    grid on;  
    hold on 
    Q=P'; 



    for i=1:size(Q,1) 
        for j=1:(size(w,1)) 
         distances(j)=sqrt((Q(i,1)-w(j,1))^2+(Q(i,2)-w(j,2))^2+(Q(i,3)-
  w(j,3))^2); 
        end 
        [min_distance(i),assignment(i)]=min(distances); 
    end 
    for i=1:size(Q,1) 
 stem3(Q(i,1),Q(i,2),Q(i,3),'sr','MarkerFaceColor',[assignment(i)/num,
 assignment(i)/num,assignment(i)/num],'MarkerSize',10) 
 xlabel('x');ylabel('y');zlabel('z'); 
    end 
    figure(gcf) 
    hold off 
end 
total_distance=sum(min_distance) 
Q 
w 
assignment 

File 1: NNNN1.m 

During the calculation the dynamical three-dimensional graph is presented (see Figure 4).  

 

Figure 4: Three-dimensional graph – three clusters 

When the calculation is terminated the input parameters and results of calculation are displayed 
on the screen. The results are presented by the total distance of the objects from corresponding 
centroids, coordinates of centroids (weights w ) and assignment of objects to clusters: 

total_distance = 

    3.5773 

w = 

    0.4947    0.5792    0.5366 

    0.2982    0.1888    0.1888 



    0.8056    0.8335    0.8502 

assignment = 

     2     2     2     1     1     1     3     1     1     3     3     3     3     3 

3.2 Clustering of real estates 

The input data of this problem are represented by the values of individual criteria 1x , 2x ,..., kx  

that characterize the objects (real estates) from various points of view. The aim is to divide the real 
estates into specified number of groups (clusters) such that the real estates in the same group have 
similar characteristics that are different enough from the properties of the real estates in other clusters. 
Sample input data are given in the Table 2 for 48 real estates and 10 criteria describing e.g. the 
locality, area, equipment and price of the particular real estate, etc. The input data are loaded from an 
MS Excel format file ShNNem.xls. 

TABLE 2: CHARACTERISTICS (CRITERIA) OF INDIVIDUAL OBJECTS (REAL ESTATES) FOR CLUSTERING 

Object Locality Type Pool Rooms Child. room Furniture Storey Area Equipment Price 

1 21 3 1 5 1 0 0 242 1 600 

2 12 11 0 4 1 1 0 1043 2 1650 

3 9 3 1 2 1 2 7 113 2 550 

4 10 11 0 5 1 0 2 929 2 1900 

... ... ... ... ... ... ... ... ... ... ... 

48 27 4 0 3 1 1 1 162 2 445 

The source code of the application prepared with use of the software Matlab and its Neural 
Network toolbox is shown in File 2. The program is started by command NNNN1Nem in MATLAB 
We use normed values of the criteria such that each criterion has the same weight. It is possible to 
choose an arbitrary number of clusters, number of learning epochs and an arbitrary value of the 
Kohonen parameter (e.g. 3 clusters, 40 epochs and Kohonen parameter equal to 0.01). 

clear all; 
tic 
P=(xlsread('ShNNem','Criteria'))'; 
for i=1:size(P,1) 
    max(P(i,:)); 
    P(i,:)=P(i,:)/max(P(i,:)); 
end 
scrsz = get(0,'ScreenSize'); 
num=input('Enter the number of clusters:'); 
epochs=input('Enter the number of epochs:'); 
kohonen=input('Enter the value of the Kohonen parameter:'); 
palette=([1 0 0; 0 1 0; 0 0 1; 1 1 1; 0 0 0; 0 1 1; 1 1 0; 1 0 1; 0.5 0.5 
0.5; 1 0 0.5; 0.5 0.5 0; 0 1 0.5; 0.5 0 0.5; 0 0.5 1; 0 0.5 0.5; 0.5 0 1; 
0.5 1 0; 1 0.5 0]); 
number=floor(num/18);     
if num>17 
    for i=0:(number-1) 
        for j=1:18 
            for k=1:3 
                colours(i*18+j,k)=palette(j,k); 
            end 
        end 
    end 
end 
if (num-18*number)~=0 
    for i=1:(num-18*number) 
        for k=1:3 
            colours(number*18+i,k)=palette(i,k); 
        end  
    end 
end 



net=newc([min(P(1,:)) max(P(1,:)); min(P(2,:)) max(P(2,:));min(P(3,:)) 
max(P(3,:)); ... 
min(P(4,:)) max(P(4,:)); min(P(5,:)) max(P(5,:));min(P(6,:)) 
max(P(6,:));min(P(7,:)) ... 
max(P(7,:));min(P(8,:)) max(P(8,:));min(P(9,:)) max(P(9,:));min(P(10,:)) 
max(P(10,:))],num,kohonen); 
net.trainParam.epochs = 1; 
for k=1:epochs 
net = train(net,P); 
w = net.IW{1}; 
subplot(2,2,1); 
for j=1:size(w,1) 
    
stem3(w(j,1),w(j,8),w(j,10),'ob','MarkerFaceColor',[colours(j,1),colours(j,
2),colours(j,3)],'MarkerSize',15,'LineWidth',2); 
    hold on 
end 
title('Cluster analysis for criteria 1, 8 and 10 (x, y and z axes, 
respectively)'); 
set(gcf,'Name','Neural Network: cluster analysis','Position',[scrsz(3)/17 
scrsz(4)/15 scrsz(3)/15*14 scrsz(4)/15*12]); 
grid on; 
Q=P'; 
count=zeros(1,num); 
for i=1:size(Q,1) 
    for j=1:(size(w,1)) 
        for l=1:size(Q,2) 
            distance(l)=(Q(i,l)-w(j,l))^2; 
        end 
        distances(j)=sqrt(sum(distance)); 
    end 
    [min_distance(i),assignment(i)]=min(distances); 
    count(assignment(i))=count(assignment(i))+1; 
end 
for i=1:size(Q,1) 
stem3(Q(i,1),Q(i,8),Q(i,10),'sr','MarkerFaceColor',[colours(assignment(i),1
),colours(assignment(i),2),colours(assignment(i),3)],'MarkerSize',10); 
xlabel('Criterium 1');ylabel('Criterium 8');zlabel('Criterium 10'); 
end 
figure(gcf) 
hold off 
subplot(2,2,2); 
for i=1:size(w,1)   
plot(w(i,:),'Color',[colours(i,1),colours(i,2),colours(i,3)],'LineWidth', 
2); 
    hold on; 
end 
title('Values of criteria for centroids of individual clusters'); 
xlabel('Criterium');ylabel('Value'); 
figure(gcf) 
hold off 
subplot(2,2,3) 
count=count/size(Q,1); 
for i=1:num 
stem(i,count(i),'LineWidth',2,'MarkerFaceColor',[colours(i,1),colours(i,2),
colours(i,3)],'MarkerSize',20); 
    hold on 
end 
title('Cluster weights'); 
xlabel('Cluster');ylabel('Cluster Weight'); 
figure(gcf) 
hold off 
total_distance(k)=sum(min_distance); 
subplot(2,2,4); 



plot(total_distance,'LineWidth',2); 
xlabel('epoch'); 
ylabel('total distance'); 
xlim([1 epochs]); 
title('Value of the total distance of individual objects from corresponding 
centroids'); 
figure(gcf) 
hold off 
end 
toc 
time=toc 
total_distance=sum(min_distance) 
w 
assignment 

File 2: NNNN1Nem.m 

During the calculation a dynamical graph with the most important features of the results is 
presented (see Figure 5). The first subplot displays all the objects (real estates) and corresponding 
centroids with respect to chosen (most significant) criteria 1, 8 and 10 (locality, area and price of the 
particular real estate, respectively). The second subplot shows the values of the individual criteria for 
different centroids. The third subplot represents the weights of the clusters (i.e. the number of objects 
assigned to each centroid). The last subplot indicates the evolution of the total distance of individual 
objects from corresponding centroids. 

 

Figure 5: Cluster analysis of real estates (with use of  Kohonen neural network) 

Finally, the following results are being displayed (the time of computation, total distance of 
objects from centroids, characteristics (criteria) of different centroids and the assignment of individual 
real estates (objects) to the corresponding centroids – clusters): 

time = 

   49.1422 

total_distance = 

   33.3494 

w = 

  Columns 1 through 9  



    0.5628    0.2369    0.5529    0.4797    0.2395    0.4228    0.2590    0.0822    0.2958 

    0.4098    0.6864    0.4985    0.6434    0.3012    0.5322    0.1600    0.3214    0.9978 

    0.5564    0.3907    0.0210    0.5676    0.3848    0.3188    0.1096    0.1143    0.7944 

  Column 10  

    0.1878 

    0.5394 

    0.2353 

assignment = 

  Columns 1 through 16  

     1     2     2     2     2     2     3     1     3     3     3     2     1     1     3     3 

  Columns 17 through 32  

     3     1     1     2     3     2     1     2     3     1     3     3     1     3     2     3 

  Columns 33 through 48  

     3     2     1     2     3     1     3     2     3     1     1     3     1     1     1     3 

The sample calculation was prepared with use of three clusters, 40 learning epochs and the 
value of the Kohonen parameter equal to 0.01 in order to obtain neat results. However, from the 
obtained results it follows that the neural networks are suitable mainly for solving the cluster analysis 
problems with higher number of clusters (and a corresponding higher value of the Kohonen 
parameter). For this number of clusters the genetic algorithms yield better results. 

4 Conclusion 

We described the use of neural networks for cluster analysis. We dealt specifically with the 
Kohonen self organizing maps. The cluster analysis can be used in various branches. One of them is 
economy and business. We can mention for example the search of best location of a market, bank or a 
facility. We discussed two specific applications prepared with use of the software Matlab and its 
Neural Network toolbox which concerned optimal location of distribution centers and clustering of 
real estates.  

There is a significant dependence of the quality of the results on the chosen value of the 
Kohonen parameter. For low values of this parameter there are better convergence properties. 
However, the resulting value is sometimes worse than for computation with higher value of the 
Kohonen parameter when the computation is not so stabile. Further, the properties of the results are 
strongly influenced by the specified number of clusters. To obtain better results for higher number of 
clusters it is better to use higher value of the Kohonen parameter. Finally, if we study the results for 
higher number of clusters obtained by use of neural networks, they are better than results obtained 
with use of genetic algorithms [4]. However, for low number of clusters it is better to use genetic 
algorithms. 
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