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Abstract 

The paper deals with simulation of the rotor vibration in a journal bearing. The rotor 
is maintained in equilibrium during rotation by a fluid pressure wedge created by an 
oil film. These bearing forces can be modeled as a rotating spring and damper 
system. The rotor motion is described by complex coordinates of the rotor centerline. 
The real part of the position vector is a rotor displacement in the X-direction while 
the imaginary part is a displacement in the perpendicular direction, as we say in the 
Y-direction. The equation of motion is containing complex variables as a function of 
time. Equation parameters are complex quantities as well. The paper demonstrates 
how to solve such an equation using Simuling.  

1 Introduction  
There are many ways how to model a rotor system, but this 

paper prefers an aproach, which is based on the concept developed 
by Muszynska [1] supported by Bently Rotor Dynamics Research 
Corporation [2]. The reason for this is that this concept offers an 
effective way to understanding the rotor instability problem and 
excitation a vibration mode at the frequency, which is a fraction of 
the rotor rotational frequency. However, this simple mathematical 
model is inapplicable for solving practical technological problems. 
Another approach can be based on the lubricant flow prediction 
using a FE method for Reynolds equation solution, see [6] for instance. These more sophisticated 
methods do not allow analyzing the dynamic system stability.  

The arrangement of proximity probes in a rotor system is shown in figure 1. Let the rotor 
angular velocity is designated by Ω . It is assumed that the sleeve of the journal bearing is fixed while 
rotor is rotating at the mentioned angular velocity. This paper proposes to use complex variables to 
describe motion of the rotor in the plane, which is perpendicular to the rotor axis. The position of the 
journal centre in the complex plane, which origin is situated in the bearing centre, is designated by a 
position vector r.  

2 Lumped parameter model of the rotor system  
The internal spring, damping and tangential forces are acting on the rotor. The external forces 

refer to forces that are applied to the rotor, such as unbalance, impacts and preloads in the form of 
constant radial forces. All these external forces are considered as an input for the mathematical model 
based on the mentioned concept [4].  

The fluid pressure wedge is the actual source of the fluid film stiffness in a journal bearing and 
maintains the rotor in equilibrium. As Muszynska has stated these bearing forces can be modeled as a 
rotating spring and damper system at the angular velocity Ωλ  (see figure 2), 
where λ  is a parameter, which is slightly less than 0.5. The parameter λ  is 
denominated by Muszynska [1] as the fluid averaged circumferential velocity 
ratio. It is assumed that the rotating journal drags the fluid in a space between 
two cylinders into motion and acts as a pump. It is easy to understand that the 
fluid circular velocity is varying across the gap as a consequence of the fluid 
viscosity: At the surface of the journal, the fluid circular velocity is the same as 
the journal circumferential velocity and at the surface of the of the bearing, the 
fluid circular velocity is zero. The angular velocity Ωλ  can be considered as 
the average angular velocity of the fluid but this quantity is only a fictive value. 
In fact, the angular velocity of the mentioned spring and damper system can be 
determined.  
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Figure 1: Journal coordinates 

ΩλΩλ

 

Figure 2: Model 
of oil film 



The validity of Muszynska’s assumption can be verified by an experiment. It is known that an 
oscillation starts when the rotor RPM crosses up some value and stops when RPM crosses down the 
other one. Some very sophisticated experiment shows that when the rotor system is excited by a non-
synchronous perturbation force with respect to the rotor rotational speed the resonance appears at the 
frequency, which is approximately equal to Ωλ . The simulation is prepared to prove the same 
properties of the mathematical model, which is based on Muszynska’s teorie. 

Fluid forces acting on the rotor in coordinates rotating at the same angular frequency as the 
spring and damper system are given by the formula 

 rotrotrot DK rrF &+= , (1) 

where the parameters, K  and D , are specifying proportionality of stiffness and damping to the 
journal centre displacement vector rotr  and velocity vector rotr& , 
respectively. The spring force acts opposite to the displacement 
vector. Assuming constant values of K  and D  (isotropic rotor 
system) and independence of these parameters on the journal 
eccentricity, the system is considered to be linear.  

To model the rotor system, the fluid forces have to be 
expressed in the stationary coordinate system, in which the journal 
centre displacement and velocity vectors are designated by r  and r& , 
respectively. Conversion of the complex rotating vector rotr  to the 
stationary coordinate system can be done by multiplication of this vector by ( )tj Ωλexp , which is the 
same as multiplying the vector in the stationary coordinates by ( )tj Ωλ−exp , see figure 3. The 
relationship between the mentioned vectors in rotating and stationary coordinates are given by the 
formulas  
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Substitution into the fluid force equation results in the following formula 
 rotrotrot DK rrF &+= , (3) 

where the complex term rΩλjD  has the meaning of the force acting in the perpendicular direction to 
the vector r  and this force is called tangential. As the rotor angular velocity increases, this force can 
become very strong and can cause instability of the rotor behavior. 

As it was mentioned the rotor is under influence of the perturbation external forces, for instance 
produced by unbalance mass or simply by gravity. This external perturbation force is assumed to be 
rotating at the angular velocity ω , which is considered to be completely independent on the rotor 
angular velocity Ω  to obtain general solution [1,2]. The rotor is perturbed by the non-synchronous 
force with respect to the rotor angular frequency. The unbalance force, which is produced by 
unbalance mass m  mounted at a radius ur  and rotating at the angular velocity ω , acts in the radial 
direction and has a phase δ  at time 0=t   
 ( )( )δ+ωω= tjmruonPerturbati exp2F , (4) 

The equation of motion for a rigid rotor rotating at the steady-state rotation speed and operating 
in a small, localized region in the journal bearing is as follows 
 ( )( )δ+ωω+Ωλ+−−= tjmrjDDKM u exp2rrrr &&& , (5) 

where M  is the total rotor mass. After rearranging the ordinary linear differential equation (5), the 
equation of motion with constant coefficients is obtained 
 ( ) ( )( )δ+ωω=Ωλ−++ tjmrjDKDM u exp2rrr &&& , (6) 

The position vector r describes a motion in the plane, which is perpendicular to the rotor axis. 
The trajectory of the rotor centerline is called an orbit.  
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Figure 3: Transform to 
stationary coordinates 



3 Equation of motion as a servomechanism  
The rotor/fluid wedge bearing/system can be demonstrated as a servomechanism working in the 

closed loop, which is shown in figure 4. The direct and quadrature dynamic stiffness is introduced 
according to the acting force direction. 
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The individual transfer function ( )ωjKDirect1   (direct dynamic compliance) is stable. The 
feedback path in the closed-loop system acts as a positive feedback and introduces instability for the 
closed-loop system. The gain of the positive feedback depends on the angular velocity Ω . The closed-
loop system is stable for the low rotor rotational speed. There is a margin for the stable behavior. If the 
gain of the positive feedback crosses over a limit value then the closed-loop becomes unstable. The 
properties of the unstable behavior can be analyzed using the servomechanism in Figure 4.  

The stability of the closed-loop dynamic system is depending on the open-loop frequency 
transfer function for ω= js  
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As it is known the closed-loop dynamic system is stable according to the Nyquist stability 
criterion if, and only if, the locus of the ( )ωjG0  function in the complex plane does not enclose the  
(-1,0) point as ω  is varied from zero to infinity [7]. Enclosing the (-1,0) point is interpreted as passing 
to the left of the mentioned point. When the steady-state vibration occurs, the stability margin is 
achieved. The locus of the ( )ωjG0  function, describing the steady-state vibration, meets the (-1,0) 
point, therefore 
 ( ) 10 −=ωCritjG . (9) 

An angular frequency, at which a system can oscillate without damping, is designated by Critω . 
Substitution (9) into (8) results in formulas for the oscillating frequency 
 MKCrit =ω2   and  Ωλ=ωCrit . (10) 

It can be concluded that the frequency of the rotor subharmonic oscillation is the same as the 
fluid average angular velocity. The measurement shows that the value of the parameter λ  is equal to 
0.475. This result confirms the introductory 
assumption about the fluid forces acting on the 
rotor. The stability margin corresponds to the 
mechanical resonances of the rigid rotor mass 
supported by the oil spring. It can be noted that 
the frequency Critω  is not equal to the rotor 
critical speed when the vibration is excited by 
the rotor unbalance.  

If the system were linear, then the 
unstable rotor vibration would spiral out to 
infinity when the rotor angular frequency 
crosses the so-called Bently-Muszynska 
threshold 
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Figure 4: Shaft/fluid wedge bearing/system as 
a servomechanism 
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4 Simulink model of the rotor system  
The equation of motion (6) contains as an unknown function of time a complex vector ( )tr  and 

the equation parameters are complex quantities as well. The complex function can be replaced by the 
real and imaginary functions and solved as many similar models. In this paper it is preferred an 
approach based on the Simuling feature 
allowing to connect blocks by a complex 
signals. Except of the integration function, all 
the blocks employed in the Simuling model 
for the motion equation (6) can work with the 
complex parameters and functions. The 
integration subsystem is shown in figure 5. 
The complex signal is decomposed into the 
real and imaginary parts for individual 
integration operation and then they are 
combined to the complex signal again.  

The Simulink block diagram for the motion equation is shown in figure 6. The system is excited 
by an unbalance force rotating at the same angular velocity Ω  (OMEGA) as the rotor and by the non-
synchronous perturbation force rotating by the angular velocity ω  (omega), which amplitude is 
proportional to the square of the angular velocity.   
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Figure 6: Model of a journal motion in a plane perpendicular to the rotor axis 
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Figure 7: Simulation outputs in the form of time history plots and XY plots 
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The instantaneous perturbation force frequency is evaluated as the first derivative of the phase, 
which is a product of the angular velocity and time divided by π2 . Simulations outputs are presented 
in the form of time history plots and XY plots as it is shown in figure 7.  

The parameters K and D, specifying oil film stiffness and damping, are a function of the 
position vector. The values of these parameters are determined by the oil film thickness. It was proved 
that the closer position of the journal to the bearing wall and simultaneously the thinner oil film, the 
greater value of both these parameters. It is assumed that it is possible to approximate both these 
functions by formulas  
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where e is a journal bearing clearance. The dependence of the values of the mentioned parameters on 
the magnitude of the position vector is shown in figure 8. 
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Figure 8: Stiffness and damping parameter value versus journal position 

5 Simulation study of the model behavior  
The parameters of the tested rotor system are setup to the values as it follows 

M = 0.5;          %  [kg]  rotor mass 
lam = 0.475;    %  [-]  fluid averaged circumferential velocity ratio (lambda) 
K = 20000;      %  [N/m]  oil film stiffness 
D = 2000;        %  [Ns/m]  oil film damping coefficient  
a = 0.0001;      %  [m]  clearance in the journal bearing 

The first simulation test is focused to the resonance behavior of the rotor system with journal 
bearing. The angular velocity of the rotating force is generated by the Ramp block, whose output is a 
constantly increasing signal. The steady-state rotation is fixed at the 2400 RPM (40 Hz). The run-up of 
rotor does not start as a sudden step of RPM to the final value but as a soft start from the stopped rotor 
position and tracking an exponential function of time with the time constant equaled to 0.5 s. The 
instantaneous rotational frequency of the perturbation force is evaluated using the first derivative of 
the rotor rotation angle with respect to time    
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As the Ramp block is generating the signal AtRB π=ω 2 , where A is a constant, the 
instantaneous rotational frequency is not equal to At , but it is greater twice as At  
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The experiment, demonstrating the rotor resonance, is based on using an auxiliary unbalanced 
disc, which is rotating at the angular frequency ω . The excitation frequency ω  is independent on the 
steady-state rotor angular frequency Ω . The perturbation force is given by unbalance mass m  
mounted at a radius ur . To test the rotor resonance using simulation the value of the product umr  is 
set to 0.0003 [kgm]. The power of the relative eccentricity in the formulas (12) is chosen 8 to extend 
the linearity range.  

The time history of the real and imaginary parts of the position vector, determining the 
coordinates of the journal centerline, is shown in figure 9. The magnitude of the journal centerline 
position vector versus the relative frequency of journal rotation is shown in figure 10. The magnitude 
reaches the maximum when the frequency of the perturbation force meets approximately half the 
journal rotational frequency. The behavior of the mathematical model is the same as the true rotor 
system during experiments. 

0 1 2 3 4 5 6 7 8 9 10
-8

-6

-4

-2

0

2

4

6

8
x 10-5

Time [s]

R
e(

r),
 Im

(r)
  [

m
]

Re(r)
Im(r)

 
Figure 9: Time history of the journal centerline coordinates  
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Figure 10: The journal centerline coordinates versus the dimensionless perturbation force rotational 

frequency related to the rotor rotational frequency 

The second simulation test is focused to the rotor instability behavior due to the fluid induced 
excitation. This phenomenon is known as an oil whirl. As it is stated above, the unstable vibration 
starts when the rotational speed reaches the certain critical limit value, which is given by the formula 



(11). For the parameter values, which are given at the beginning of the chapter, the critical value of 
rotational frequency Critf  is equal to 67 Hz. For the product umr  equaled to 0.00005 [kgm] the onset 
of extensive vibrations is appearing at the rotational frequency 103 Hz as it is shown in figure 11. The 
simulation tests show that the value of umr  affects the moment when the instability is started up. The 
minimal value of the rotational frequency was detected at 95 Hz.  
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Figure 11: Time history of the rotational frequency and journal centerline coordinates up to the 

moment when fluid induced vibration starts up 

The experiments show that when the rotor is in unstable state (vibration are limited only by the 
bearing wall), the frequency of vibration is slightly less than half the rotor rotational frequency Ω . 
The analysis of the stability margin results in the formula (11), which enables to evaluate the 
frequency of the steady-state vibration as a fraction Ωλ  of the rotational frequency Ω . The ZOOMs 
of the position vector real and imaginary parts just before and after the vibration onset, which are 
shortened into the time interval of 0.1 s, are shown in figure 12. Comparison of the number of waves 
in the time intervals of the same length shows that the frequency of vibration drops to half the 
frequency before the vibration onset. It can be concluded that the behavior of the simulation model 
and the true rotor system is the same [8, 9]. 
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Figure 12: ZOOM of the journal centerline coordinate time history just before and after the vibration 

onset  

All the simulations are performed using the variable integration step and the ODE45 integration 
method setting.  



6 Conclusion 
The lumped parameter model of the journal centerline motion in the journal bearing is 

based on Muszynska’s theory. The equation of motion is containing the complex vector and 
parameters. The main goal of the simulation study was to verify the model principle by 
comparing simulation results with results of experiments, which are described in many 
papers, namely the instability of motion and the vibration mode at the non-synchronous 
perturbation.  

The simulation of the rotor system using Simulink results in confirming the agreement 
between Muszynska’s model and experiments.  
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