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Abstract

We show some of the properties of the algebraic multilevel iterative methods

when the hierarchical bases of finite elements with rectangular supports are used.

In particular, we study two types of hierarchy, the so called h- and p-hierarchical

finite element spaces.

1 Hierarchical Bases of Finite Elements

We assume a weak formulation of a partial differential elliptic equation,

a(u, v) = (f, v), (1)

for u, v ∈ H1
0 (Ω), Ω polygonal domain in R2,

a(u, v) =

∫

Ω

A∇u.∇v dx and (f, v) =

∫

Ω

fv dx, (2)

A symmetric positive definite in Ω.

We suppose a FE approximation V of H1
0 (Ω). The algebraic multilevel iterative (AMLI)

method in its two-level form exploits a splitting of the FE space into two hierarchical spaces of
functions, let us denote the coarse grid space by U and the space of functions corresponding to
the added nodes of the fine grid by W , and let

V = U ⊕ W.

Then the equation (1) can be transformed into a 2 × 2 block form

( BW BWU

BUW BU

)( ũW

ũU

)

=
( FW

FU

)

, (3)

where ũW and ũU are the coefficients of the solution with respect to the basis of U and of W ,
respectively.

We can choose the block diagonal of the matrix B of the system (3) as for the precondi-
tioning matrix Madd (additive form) or we can use the block Gauss-Seidel preconditioning Mmult

(multiplicative form). Thus the preconditioned system (3) has the condition number bounded
by

κ(M−1

addB) ≤
1 + γ

1 − γ

and

κ(M−1

multB) ≤
1

1 − γ2
,

respectively, where γ is the constant in the strengthened Cauchy-Bunyakowski-Schwarz (CBS)
inequality

|a(u,w)| ≤ γ
√

a(u, u)a(w,w),

u ∈ U , w ∈ W . See e.g. [2, 3] and the references therein for more detailed theory.



Figure 1: Four coarse grid functions of U on a reference macroelement.

Figure 2: Five fine grid functions of Wh corresponding to h-refinement on a reference macroele-
ment.

2 CBS Constants for h- and p-hierarchy on rectangular elements

In this paper we consider two different refinements of the space of bilinear FEs on rectangles.
The coarse space U contains piecewise bilinear functions, i.e. on one macroelement, there are
four bilinear functions, see Figure 1. The fine grid space Wh corresponding to the h-refinement
of U is represented by five piecewise bilinear functions on a reference macroelement, see Figure 2,
while the space Wp corresponding to the p-refinement of U is represented by five functions of
the polynomial space Q2 on each macroelement, which can be seen on Figure 3.

We compute the uniform estimates of the CBS constants for these two refinements of
bilinear FEs. Obviously, the upper bound for γ less than one indicates that the corresponding
splitting can be used for the AMLI methods. Several hierarchical FE spaces have been studied
and the uniform CBS constant estimates were found, see e.g. [2, 3, 4, 5, 7]. In this paper we
introduce some new results. The first result is that the CBS constant is uniformly bounded in
case of p-hierarchy of bilinear FEs when matrix A in equation (2) is diagonal. The upper bound
is slightly greater than that for h-refinement. In comparison, the p-refinement of the linear
FEs on triangles yields the uniform CBS constant estimate equal to one, thus this splitting is
unusable for AMLI methods [5].



Figure 3: Five fine grid functions of Wp corresponding to p-refinement on a reference macroele-
ment.

Theorem 1. The CBS constants for the hierarchical h-refinement of bilinear FEs and for
the equation (1) with a diagonal matrix A in (2) are not greater than

√

3

8
and

√

3

4
,

respectively, for isotropic operator and regular elements and for anisotropic equation or elements,
respectively. The CBS constants for the hierarchical p-refinement of bilinear FEs are not greater
than

√

5

11
and

√

9

11
,

respectively, for isotropic operator and regular elements and for anisotropic equation or elements,
respectively.

In the case when matrix A in (2) is positive definite but not diagonal, the uniform CBS
constatnt estimate is equal to one. Thus for such equations the AMLI methods don’t yield
better convergence than one-level iterative solvers.

3 Robust Preconditioning

In papers [1, 3] the new idea of constructing a preconditioning matrix CW for the block BW

which leads to the uniformly bounded condition number has been introduced. The hierarchical
linear FEs on triangles are considered there.

The preconditioning matrix CW is assembled element by element from the macroelement
stiffness matrices which correspond to the space W . From these particular matrices, some of the
off-diagonal entries are deleted in such manner that after a proper reordering the basis functions
of W (reordering rows and columns in CW ), the preconditioning matrix CW is tri-diagonal. The
off-diagonal elements which are not deleted from the macroelement stiffness matrices can be
called ”strong connections” for the purpose of this paper.

We show that this idea can be adopted for the hierarchical h- and p-refinement of bilinear
FEs as well. The strong connections are graphically displayed on Figure 4 for five basis func-
tions of W on a macroelement and for h-refinement of bilinear FEs. On Figure 5, the strong
connections for p-refinement of bilinear FEs are marked. The connections marked by α (solid
lines) are kept when

A11

A22

≥
d2
1

d2
2



Figure 4: ”Strong connections” among functions of Wh on a macroelement for h-refinement of
bilinear FEs.

Figure 5: ”Strong connections” among functions of Wp on a macroelement for p-refinement of
bilinear FEs.

where A11 and A22 are the diagonal elements of matrix A in (2) and d1 × d2 is the size of
the particular coarse element, otherwise the entries corresponding to the connections β (dashed
lines) are presented in the preconditionig matrix.

The examples of numbering the basis functions of the refining space W for case of h- and
p-refinement are presented in Figure 6 and in Figure 7, respectively. We consider six coarse
elements in these examples.

Theorem 2. There exists generalized tri-diagonal preconditioning matrices such that the
preconditioned diagonal blocks BW have the condition numbers not greater that 4.2 and 8.2,
respectively, for the hierarchical h- and p-refinement of bilinear FEs, respectively.

In paper [6] more details on this issue are provided.

Figure 6: An example of reordering the elements of Wh in h-refined bilinear FEs.



Figure 7: An example of reordering the elements of Wp in p-refined bilinear FEs.

All of the estimates presented in this paper have been obtained after the singular value
decomposition and the eigenvalue computation for the concerned matrices which were first nu-
merically performed with help of Matlab software and then proved analytically.
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