OCHRANA VOJENSKÝCH OBJEKTŮ PROTI ÚČINKŮM VÝKONOVÝCH ELEKTROMAGNETICKÝCH POLÍ, SIMULACE EMC FILTRŮ

Ing. Zbyněk Plch VOP-026 Šternberk s.p., divize VTÚPV Vyškov Zkušebna elektrické bezpečnosti a elektrotechnických prostředků V. Nejedlého 691, 682 03, Vyškov, ČR

Anotace:

Příspěvek zahrnuje dílčí výsledky dosažené při řešení projektu TEROR IMPULS "Ochrana vojenských objektů a prostorů proti účinkům výkonových elektromagnetických polí" [1] v rámci národního programového výzkumu ministerstva obrany v oblasti bezpečnosti a obrany AČR. Příspěvek za zabývá odrušovacími filtry, které potlačují vysokofrekvenční rušení šířící se po vedení. Simulace provedené v Matlabu slouží k ověření útlumových charakteristik filtrů např. při změně impedance sítě a při dosažení tzv. nejhoršího případu vložného útlumu filtru. Jelikož charakteristiky filtrů uváděné v katalogových listech neodpovídají skutečným provozním podmínkám a liší se i o několik desítek dB.

1 Úvod

Současná doba je ve vojenství charakteristická prudkým rozvojem v zavádění techniky a systémů s výrazným podílem elektronických a digitalizovaných prvků. Dalším rysem je však i vývoj prostředků rušení a elektromagnetických zbraní, které jsou primárně určeny k narušení spolehlivé činnosti, případně destrukci výše uvedených zařízení a systémů u protivníka. Jedna ze základních vlastností, která určuje zranitelnost sofistikovaných digitálních systémů v předpokládaném konfliktu, je tedy i jejich odolnost proti účinkům vnějších elektromagnetických polí.

Zabezpečení ochrany důležitých vojenských, ale i pro chod státu nezbytných elektronických a digitalizovaných systémů před možným napadením prostředky využívající k destrukci výkonovou elektromagnetickou energii v kmitočtovém pásmu od stovek MHz do desítek GHz, tak nabývá na významu. Toto zabezpečení ochrany se týká vojenských stacionárních i mobilních objektů a prostorů se zasazenou technikou s citlivými elektronickými a digitalizovanými systémy. Za citlivé elektronické a digitalizované systémy je třeba považovat veškerou techniku citlivou na narušení jejich funkcí nebo trvalé zničení vlivem účinků silných elektromagnetických polí (KIS, řídicí a palebné systémy, systémy navigace, průzkumné systémy apod.). V civilním sektoru se pak jedná zejména o instituce důležité pro chod státu, průmyslová centra jako jsou jaderné elektrárny, chemické provozy apod. Zodolňování vojenských objektů proti elektromagnetickým hrozbám s jejich následným zdokonalováním a ověřováním požadovaného stavu by mělo být považováno za součást koncepčního návrhu u všech zasazených sofistikovaných systémů, na které je kladen požadovek vysoké spolehlivosti v činnosti a přežití v krizových situacích.

2 Elektromagnetické odrušovací filtry

Odrušovací filtry jsou lineární elektrické obvody, jejichž hlavní funkcí je potlačování vysokofrekvenčního rušení, které se šíří po vedení. Nejčastěji jsou navrhovány jako **filtry L-C typu dolní propust**, které bez potlačení propouštějí signály (proudy) s kmitočtem nižším než je určitý mezní kmitočet f_m a naopak tlumí složky, jejichž kmitočet je vyšší než tento mezní kmitočet. Mezi základní vlastnost filtru patří vložný útlum, který můžeme vyjádřit pomocí kaskádních parametrů dvojbranu vztahem:

$$L = 20 \cdot \log \left| \frac{U_{20}}{U_2} \right| = 20 \cdot \log \left| \frac{Z_Z}{Z_S + Z_Z} \cdot \mathbf{A}_{11} + \frac{1}{Z_S + Z_Z} \cdot \mathbf{A}_{12} + \frac{Z_S \cdot Z_Z}{Z_S + Z_Z} \cdot \mathbf{A}_{21} + \frac{Z_S}{Z_S + Z_Z} \cdot \mathbf{A}_{22} \right| (2.1)$$

Kde U_2 je napětí na výstupu filtru (na zátěži Z_Z), U_{20} je totéž napětí bez přítomnosti filtru a A_{11} , A_{12} , A_{21} , A_{22} jsou (komplexní) kaskádní parametry filtru, tj. prvky jeho kaskádní matice **A**. Ze vztahu (2.1) je jasné, že vlastnosti filtru a velikost jeho vložného útlumu závisí jednak na jeho vlastních parametrech, jednak na impedančních parametrech zdroje i přijímače rušení (tedy např. impedance napájecí sítě Z_S a impedance napájecího vstupu přístroje Z_Z). A právě neurčitost těchto impedancí způsobuje značné obtíže při návrhu síťového odrušovacího filtru a je hlavní příčinou toho, že jeden a týž filtr vykazuje velké odchylky hodnot vložného útlumu v závislosti na vnějších pracovních (= impedančních) podmínkách obvodů, v nichž je zapojen. Rozdíly mezi útlumem filtrů udávaným v katalozích a skutečnými hodnotami měřenými v provozních podmínkách tak mohou dosáhnout až několik desítek dB.

Obr. 1 - Zapojení síťového odrušovacího filtru

2.1 Popis statických a dynamických vlastností filtrů prostřednictvím Matlabu

Dynamický systém má obecně vstupní veličiny u(t), výstupní veličiny y(t) a stavové (vnitřní) veličiny x(t). Pro popis matematického modelu dynamických vlastností lineárního systému je několik způsobů, které lze rozdělit na dvě skupiny:

- A) Vnější popis systému vyjadřuje dynamické vlastnosti relací mezi vstupem a výstupem. Při vnějším popisu systému považujeme systém (filtr) za černou skříňku se vstupem a výstupem. Nevíme co se děje uvnitř, nemusíme znát strukturu analyzovaného systému. Analyzujeme pouze reakci systému na vstupní signály. Jedná se o jednoduché a názorné způsoby, z nichž pro systém s vstupní a výstupní veličinou bude uvedena:
 - přenos systému (v Laplaceově transformaci),
 - lineární diferenciální rovnici systému,
 - přechodovou funkci a přechodovou charakteristiku systému,
 - impulsní funkci a impulsní charakteristiku systému,
 - kmitočtovou charakteristiku v komplexní rovině,
 - kmitočtovou charakteristiku v logaritmických souřadnicích (vložný útlum),
 - polohu pólů a nul přenosu systému.
- B) **Vnitřní popis systému** vyjadřuje dynamické vlastnosti reakcí mezi vstupem, vnitřním stavem a výstupem systému.

Pro analýzu byl vybrán průchodkový filtr firmy Schaffner FN7660-100/M8, který je v současné době jeden z nejpoužívanějších v zástavbách mobilních prostředků Armády ČR.

Nejprve jsou popsány vlastnosti pro vnější popis systému.

Přenos systému

Je definován jako poměr Laplaceova obrazu výstupní veličiny k Laplaceově obrazu vstupní veličiny při nulových počátečních podmínkách systému. Tvar přenosu:

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0}$$
(2.2)

Musí být splněna podmínka fyzikální realizovatelnosti:

 $m \leq n$

Dle katalogového listu výrobce [8], jeho vykreslené útlumové charakteristiky a principiálního schématu zapojení se základními hodnotami parametrů, byla provedena identifikace systému a sestaven model systému [2] z něhož vyplývá přenos G(s) filtru FN7660-100/M8 ve tvaru:

$$G(s) = \frac{6.77 \cdot 10^{-51} \cdot s^{6} + 1.16 \cdot 10^{-42} \cdot s^{5} + 2.72 \cdot 10^{-32} \cdot s^{4} + 4.65 \cdot 10^{-24} \cdot s^{3} + 4.4 \cdot 10^{-16} \cdot s^{2} + 2.82 \cdot 10^{-8} \cdot s + 1}{6.76 \cdot 10^{-56} \cdot s^{7} + 6.88 \cdot 10^{-46} \cdot s^{6} + 9.7 \cdot 10^{-35} \cdot s^{5} + 2.84 \cdot 10^{-27} \cdot s^{4} + 1.982 \cdot 10^{-18} \cdot s^{3} + 1.12 \cdot 10^{-12} \cdot s^{2} + 5.7 \cdot 10^{-5} \cdot s + 1}$$

Na základě výše uvedeného přenosu G(s) je systém dále analyzován.

Popis systému lineární diferenciální rovnicí

Přenos systému můžeme transformovat použitím pravidel Laplacoovy transformace na lineární diferenciální rovnici pomocí:

$$[a_{n}s^{n} + a_{n-1}s^{n-1} + \dots + a_{1}s + a_{0}] Y(s) = b_{m}s^{m} + b_{m-1}s^{m-1} + \dots + b_{1}s + b_{0}] U(s)$$
(2.3)

na tvar:

$$a_{n}y^{(n)}(t) + a_{n-1}y^{(n-1)}(t) + \dots + a_{1}y'(t) + a_{0}y(t) = b_{m}u^{(m)}(t) + \dots + b_{0}u(t)$$
(2.4)

kde a_i, b_i jsou konstantní koeficienty, u(t) je vstupní veličina a y(t) je výstupní veličina.

Lineární diferenciální rovnice pro filtr FN7660-100/M8 má tvar:

 $\begin{array}{l} 6,76^{\ast}10^{-56}\;y^{(7)}(t)\;+\;6,88^{\ast}10^{-46}\;y^{(6)}(t)\;+\;9,7^{\ast}10^{-35}\;y^{(5)}(t)\;+\;2,84^{\ast}10^{-27}\;y^{(4)}(t)\;+\;1,982^{\ast}10^{-18}\;y^{(3)}(t)\;+\;1,12^{\ast}10^{-12}\;y^{(2)}(t)\;+\;5,7^{\ast}10^{-5}\;y^{(1)}(t)\;+\;y(t)\;=\;6.77^{\ast}10^{-51}u^{(6)}(t)\;+\;1.16^{\ast}10^{-42}u^{(5)}(t)\;+\;2.72^{\ast}10^{-32}\;u^{(4)}(t)\;+\;4.65^{\ast}10^{-24}u^{(3)}(t)\;+\;4.4^{\ast}10^{-16}u^{(2)}(t)\;+\;2.82^{\ast}10^{-8}u^{(1)}(t)\;+\;u(t))\end{array}$

Přechodová funkce a přechodová charakteristika systému

Přechodovou funkci, označujeme ji h(t), je odezva na jednotkový (Heavisideův) skok při nulových počátečních podmínkách systému. Přechodová charakteristika je grafické znázornění přechodové funkce. Obraz přechodové funkce je:

$$L\{h(t)\} = H(s) = G(s)U(s) = \frac{G(s)}{s}.$$
(2.5)

Odezva na jednotkový skok pro filtr FN7660-100/M8 je na obr. 2.

Obr. 2 - Přechodová charakteristika filtru FN 7660-100/M8

Impulsní funkce a impulsní charakteristika systému

Impulsní funkce, označujeme ji g(t), je odezva na jednotkový (Diracův) impulz při nulových počátečních podmínkách systému. Impulsní charakteristika je grafické znázornění impulsní funkce. Obraz impulsní funkce je:

$$L\{g(t)\} = G(s)L\{\delta(t)\} = G(s)$$
(2.6)

Odezva na jednotkový impuls pro filtr FN7660-100/M8 je na obr. 3.

Obr. 3 - Impulsní charakteristika filtru FN 7660-100/M8

Kmitočtový přenos

Kmitočtový přenos $G(j\omega)$ je definován poměrem časových vektorů odezvy ke vstupu – harmonického signálu v ustáleném stavu po odeznění přechodového děje. Kmitočtový přenos je dán poměrem těchto vektorů:

$$G(j\omega) = \frac{y(t)}{u(t)} = \frac{y_0 e^{j(\omega + \varphi)}}{u_0 e^{j\omega t}} = \frac{y_0}{u_0} e^{j\omega}, \qquad (2.7)$$

další úpravou lze dosáhnout vztahu:

$$\frac{y_0 e^{j(\omega t + \varphi)}}{u_0 e^{j\omega t}} = \frac{b_m (j\omega)^m + \dots + b_1 j\omega + b_0}{a_n (j\omega)^n + \dots + a_1 j\omega + a_0} = G(j\omega),$$
(2.8)

Amplitudo-fázová kmitočtová charakteristika

Je grafické zobrazení kmitočtového přenosu. Je to geometrické místo koncových bodů vektoru $G(j\omega)$ zakreslené v komplexní rovině. Amplitudo-fázová kmitočtová charakteristika pro filtr FN7660-100/M8 je na obr. 4.

Obr. 4 - Aplitudo-fázová kmitočtová charakteristika filtru FN 7660-100/M8

Kmitočtová charakteristika v logaritmických souřadnicích

Kmitočtový přenos lze zlogaritmovat. Využijeme dekadického logaritmu pro osu úhlového kmitočtu ω , tj. log ω a na osu souřadnic amplitudové charakteristiky se vynáší absolutní hodnota kmitočtového přenosu v decibelech, což jsou jednotky definované jako dekadický logaritmus poměru obrazu výstupního signálu násobeného dvaceti, tj.:

$$L[dB] = |G(j\omega)|_{dB} = 20 \log_{10} |G(j\omega)|.$$
(2.9)

Tuto kmitočtovou charakteristiku v logaritmických souřadnicích uvádějí výrobci pro zobrazení vložného útlumu filtrů. Pro filtr FN7660-100/M8 je výsledná charakteristika na obr. 5.

Obr. 5 - Kmitočtová charakteristika v logaritmických souřadnicích filtru FN 7660-100/M8

Charakteristika vložného útlumu udávaná výrobcem je na obr. 6. Je to charakteristika označená na obrázku písmenem B.

Obr. 6 - Simulovaný filtr a kmitočtová charakteristika v logaritmických souřadnicích udávaná výrobcem

V tabulce 1 je porovnání simulované charakteristiky vložného útlumu v matlabu s útlumovou charakteristikou uváděnou v katalogovém listě výrobce (obr.6).

	vložný útlum filtru				
frekvence	10 kHz	100 kHz	1 MHz	10 MHz	100 MHz
simulováno	8 dB	23 dB	34 dB	101dB	120 dB
katalogový list	8 dB	22 dB	33 dB	75 dB	>100 dB

Tab. 1 – Porovnání filtru Schaffner

Poloha pólů a nul přenosu systému

Jejich poloha je zřejmá z tvaru přenosu, kde polynomy čitatele i jmenovatele jsou rozloženy v součin kořenových činitelů

$$G(s) = \frac{Y(s)}{U(s)} = \frac{b_m s^m + \dots + b_1 s + b_0}{a_n s^n + \dots + a_1 s + a_0} = \frac{b_m}{a_n} \frac{(s - s_1) \cdots (s - s_m)}{(s - s_1) \cdots (s - s_n)}$$
(2.10)

Nuly i póly mohou být buď reálné nebo komplexně sdružené nebo i ryze imaginární. Reálné póly způsobují aperiodický přechodový děj, póly komplexně sdružené zapříčiňují kmitavou složku přechodového děje. Stabilní nula způsobuje překmit a nestabilní nula způsobuje podkmit přechodového pochodu. Póly v počátku vyjadřují integrační charakter přechodového děje systému. Nuly v počátku představují derivační charakter. U pólů a nul je rozhodující jejich poloha v komplexní rovině vzhledem k imaginární ose. V levé polovině jsou stabilní póly a nuly (mají zápornou reálnou část), v pravé polovině jsou nestabilní póly a nuly (mají kladnou reálnou část).

Řešením polynomu čitatele určíme kořeny čitatele (nuly přenosu) a řešení polynomu jmenovatele určíme kořeny jmenovatele (póly přenosu). V Matlabu k tomuto vyjádření slouží funkce *roots*.

Nuly přenosu pro filtr FN7660-100/M8:

 $\begin{array}{l} -7.14285714285714E{+}0007 \pm j & 3.12567838924059E{+}0007 \\ -1.42857142857142E{+}0007 \pm j & 7.66481945186580E{+}0007 \\ 0.000000000000E{+}0000 \pm j & 2.000000000000E{+}0009 \end{array}$

Póly přenosu pro filtr FN7660-100/M8:

```
\begin{array}{l} -5.07125821857252E+0009\pm j & 3.75272992972688E+0010\\ -1.42663286056535E+0007\pm j & 1.42084482849304E+0008\\ -2.38968383377202E+0005\pm j & 5.36306361326915E+0006\\ -1.75403054523002E+0004 \end{array}
```

Tímto je splněna podmínka pro stabilitu systému, která říká, že všechny kořeny charakteristické polynomu musí mít zápornou část, čili musí ležet v levé polorovině komplexní roviny. Na obr. 7 je vykreslena poloha pólů a nul.

Obr. 7 - Poloha pólů a nul v komplexní rovině vzhledem k imaginární ose

Pro kontrolu zda je systém stabilní využijeme Nyquistova kritéria stability, které umožňuje ověřovat stabilitu na základě kmitočtové charakteristiky otevřeného regulačního obvodu.

Nyquistovo kritérium stability: Je-li otevřený regulační obvod stabilní, pak uzavřený regulační obvod bude stabilní tehdy a jen tehdy, když amplitudo-fázová kmitočtová charakteristika otevřeného regulačního obvodu (Nyquistova křivka) neobklopuje kritický bod [-1, j0]. viz obr. 8.

Obr. 8 - Nyquistova křivka

Nyiquistova křivka pro filtr FN7660-100/M8 je na obr. 9.

Obr. 9 - Nyquistova křivka pro určení stability filtru FN7660-100/M8

Z grafu je patrné, že systém je stabilní, jelikož křivka neobklopuje kritický bod [-1, j0].

Vnitřní popis systému:

Vnitřní popis chování dynamického systému v časové oblasti vede na tzv. stavový popis. Stavový model pro lineární stacionární dynamický systém pro spojitý systém má tvar:

$$x'(t) = Ax(t) + Bu(t) \dots stavová rovnice$$
 (2.11)

$$y(t) = Cx(t) + Du(t) \dots výstupní rovnice$$
 (2.12)

kde **A** je matice systému, **B** je matice buzení, **C** je matice výstupní a **D** je matice převodu. Dynamika systému je způsobena závislostí okamžitého stavu systému na jeho předcházejících stavech, tj. na jeho historii. U skutečných systémů závislost stavu na minulé historii způsobují převážně prvky, které akumulují energii, např. kapacitory a induktory. Stavový vektor **x** je uvažován jako abstraktní veličina, kterou nelze přímo měřit. Vektory **u** a výstupy **y** jsou naopak veličiny, které mají konkrétní fyzikální význam. Rovnici (2.12) chápeme jako abstraktní model fyzikálních relací mezi fyzikálními veličinami **u** a **y** a abstraktní veličinou **x**. Přitom předpokládáme, že v libovolném okamžiku jsme zvolili libovolný, ale pevný souřadnicový systém ve vektorovém prostoru.

Výpis programu Matlab pro popis vnitřního systému filtru FN7660-100/M8:

```
1.0e+055 *
                                -0.0000
                                          -0.0000
   -0.0000
            -0.0000
                      -0.0000
                                                    -0.0001
                                                             -1.4782
    0.0000
                           0
                                      0
                                                0
                                                          0
                  0
                                                                    0
             0.0000
                            0
        0
                                      0
                                                0
                                                          0
                                                                    0
        0
                  0
                       0.0000
                                      0
                                                0
                                                          0
                                                                    0
        0
                  0
                            0
                                 0.0000
                                                0
                                                          0
                                                                    0
        0
                  0
                            0
                                      0
                                           0.0000
                                                          0
                                                                    0
        0
                  0
                            0
                                      0
                                                0
                                                     0.0000
                                                                    0
B =
     1
     0
     0
     0
     0
     0
     0
C =
  1.0e+055 *
    0.0000
             0.0000
                       0.0000
                                 0.0000
                                           0.0000
                                                     0.0000
                                                              1.4782
D =
     0
```

3 Simulace filtru při změně impedance sítě (zdroje)

Vložný útlum filtru závisí na vlastních parametrech a impedančních parametrech zdroje i přijímače rušení. V této kapitole je popsán vliv změny impedance sítě na hodnotu vložného útlumu filtru.

Impedance energetické napájecí sítě je veličina, jejíž hodnota silně závisí na typu a provedení sítě a značně se mění v závislosti na kmitočtu v širokém rozsahu ve velmi širokém rozsahu od jednotek Ω až po stovky Ω . Obvyklá hodnota impedance sítě uváděná v katalogových listech výrobců filtrů je 50 Ω . Pro simulace byl vybrány tyto impedance sítě: 5, 20, 50 a 100 Ω . Impedance na výstupu je 50 Ω .

Pro simulaci byl vybrán filtr Schaffner FN7660-100/M8 a filtr RWMO L2254U62.

A =

Obr. 10 - Útlumové charakteristiky při změně impedance zdroje pro filtr FN7660-100/M8

Obr. 11 - Útlumové charakteristiky při změně impedance zdroje pro filtr RWMO L2254U62

Jak je vidět z grafů na obr. 10 a obr. 11 je patrné, že hodnota impedance zdroje má značný vliv na výsledný útlum filtrů. U filtru Schaffner je rozdíl mezi útlumem filtru při impedanci 1 Ω a impedancí 100 Ω při frekvenci 100 MHz roven 40 dB. U filtru RWMO je tato hodnota rozdílu při frekvenci 1MHz rovna 35 dB.

4 Simulace filtru pro dosažení "nejhoršího" případu vložného útlumu filtrů

Nejčastěji doporučované systémy pro získání, tzv. "nejhoršího případu" vložného útlumu odrušovacích filtrů jsou systémy 0,1 Ω /100 Ω , resp. 100 Ω /0,1 Ω . Pokud se posuzují ještě větší rozdíly hodnot vstupní a výstupní impedance vzhledem k vlastní impedanci filtru (většinou jsou konstruovány na 50 Ω), lze dosáhnout ještě nižších hodnot vložného útlumu odrušovacího filtru. Ale posunování těchto impedancí nemá příliš velký smysl. Pravděpodobnost výskytu vyšší hodnoty impedancí než 100 Ω se jeví v praktickém použití filtru jako velmi malá. Z těchto důvodů není tedy nutné hodnotu impedance příliš zvyšovat.

Pro simulace byly opět vybrány filtr Schaffner FN7660-100/M8 a filtr RWMO L2254U62, navíc je simulován filtr Schaffner FN256-64-52.

Nejhorších výsledků bylo při simulaci dosaženo v impedančním systému 0,1 $\Omega/100 \Omega$. Na obr. 12 - 14 jsou znázorněny tyto charakteristiky v impedančním systému 0,1 $\Omega/100 \Omega$.

Obr. 12 - Útlumové charakteristiky pro filtr FN7660-100/M8 v impedančním systému 0,1 Ω /100 Ω

Obr. 13 - Útlumové charakteristiky pro filtr RWMO L2254U62v impedančním systému 0,1 Ω /100 Ω

Obr. 14 - Útlumové charakteristiky pro filtr Schaffner FN256-64-52 impedančním systému 0,1 Ω /100 Ω

Jak je patrné z grafu na obr. 85 filtr Schaffner FN7660-100/M8 dosahuje ve frekvenčním pásmu 100 kHz až 800 kHz místo vložného útlumu tzv. vložný zisk o hodnotě 12 dB. Podobně filtr RWMO L2254U62 na obr. 86 dosahuje ve frekvenčním pásmu 20 MHz až 25 MHz vložný zisk o hodnotě 3 dB. Poslední simulovaný filtr Schaffner FN256-64-52 dosahuje ve frekvenčním pásmu 2 kHz až 15 kHz vložný zisk 5 dB. Tento vložný zisk je u reálných obvodů způsoben oscilacemi, které jsou přisuzovány vlastním rezonancím filtru. Kritické vlastní rezonance se mohou vyskytnout, právě tehdy, když jedna připojená (vnější) impedance je příliš vysoká a druhá příliš nízká, tak jak je to právě u našeho simulovaného systému 0,1 $\Omega/100 \Omega$.

5 Závěr

Charakteristiky vložného útlumu filtru závisí na vlastních parametrech a impedančních parametrech zdroje i přijímače rušení. Změny těchto impedančních parametrů mají značný vliv na výsledný útlum filtru a liší se od charakteristik udávaných v katalogových listech i o několik dB, v některých případech dokonce filtr nevykazuje vložný útlum, ale vložný zisk. Obvyklá hodnota impedance uváděná v katalogových listech výrobců filtrů je 50 Ω , ale tato hodnota neodpovídá reálným podmínkám. Simulací bylo přiblíženo chování filtru v reálných podmínkách.

6 Literatura

- [1] PLCH, Z., DOSTÁL, F., BEZDĚK, M., *TEROR IMPULS II Ochrana vojenských objektů a prostorů proti účinkům výkonových elektromagnetických polí.* Technická zpráva projektu výzkumu ministerstva obrany ČR. 2007. VTUPV Vyškov, 229 s.
- [2] SEDLÁČEK, J., DŘÍNOVSKÝ, J., SZABÓ, Z., Modelování přenosných parametrů kmitočtových filtrů EMC Technická zpráva, VUT UTEE Brno, 2006, 65s.
- [3] BALÁTĚ, J. Automatické řízení . 1. vydání. Praha: BEN, 2003. 664 s. ISBN 80-7300-020-2.
- [4] NOSKIEVIČ, P. *Modelování a identifikace systémů*. 1. vydání. Ostrava: MONTANEX a.s., 1999. 280 s. ISBN 80-7225-030-2.
- [5] ČSN CIPSPR 17. Metody měření útlumových charakteristik pasivních vysokofrekvenčních filtrů a odrušovacích součástek. Česká technická norma. Český normalizační institut. Praha, 2000, 28s.
- [6] PAARMANN, L., *Design and Analysis of Analog Filters*. 2. editon. Kluwer Academic Publisher, 2001. ISBN: 0792373731.
- [7] RWMO, Katalogový list Čtyřvodičové filtry. RWMO s.r.o., 2006.
- [8] Schaffner, Datasheets EMC Filters. Schaffner, 2006.

Ing. Zbyněk Plch mailto:zbynek.plch@vtupv.cz tel: + 420 517 303 673

VOP-026 Šternberk s.p. Divize VTÚPV Vyškov Zkušebna elektrické bezpečnosti elektrotechnických prostředků V. Nejedlého 691, 682 03, Vyškov www.vop.cz_www.zebep.cz