UNIT TESTING FRAMEWORK FOR MATLAB

M. Kvasnica, L. Cirka

Institute of Information Engineering,
Automation and Mathematics,
Slovak University of Technology,
81237 Bratislava, Slovakia

Abstract

In this work we present a new framework for unit testing of programs in MAT-
LAB. The framework can be used if the Test Driven Development (TDD) ap-
proach is employed in the development process. The framework allows the user
to write and execute test files, which verify correct behavior of the tested code.
In the TDD approach, each test should verify only a small portion of certain
tested function, hence the tests are referred to as unit tests. Due to that one
usually has a large number of unit tests when developing complex programs.
Our framework therefore offers a user-friendly way of creating and managing
multiple tests.

1 Introduction

Software development is a complex process especially when multiple developers are involved.
Guaranteeing quality, correctness and coherence of all implemented modules is therefore of
imminent importance. There are various coding techniques which could be employed in the
development process. For instance, in the extreme programming approach several developers
share the same computer and they split the job such that one coder writes the code and the
other one watches over him. Then, after some period of time they exchange the responsibilities.
It is without doubt that while this approach can minimize errors in the written code, it is done
so on expenses in the man power. Moreover, it is difficult to verify that the currently worked
on code is coherent with other modules of the whole software package. Therefore the extreme
programming approach further evolved to include automated testing procedures. This approach,
also known as the test driven development procedure, is based on a, possible large, number test
files which represent design requirements put on the whole software. Successful execution of all
tests then verifies the correct behavior of the overall code.

This testing is usually performed on 4 levels:

1. wunit testing, where a minimal unit of the code is being tested;
2. integration testing, where possible defects in interactions between several units are tested;

3. system testing, where the whole code is integrated into the final product and the testing
validates that all design criteria have been met;

4. acceptance testing, where all design goals are being validated.

Since the number of tests is usually very large (often in range of thousands of tests or
even more), it wouldn’t be possible to apply the TDD approach without a framework which is
capable of managing and executing the individual test files. Therefore in this paper we present
a new unit testing framework for the MATLAB environment. The package allows MATLAB
users to easily write unit test files, execute them, compare their results and visualize all results
by means of a web application.

This paper is structure as follows. In Section 2 we first review the basics characteristics
of test driven development and unit testing. The toolbox itself will be presented in Section 3,
before wrapping up the paper by conclusions.

2 Test Driven Development and Unit Testing

In the Test Driven Development (TDD) approach the code is created in a way such that firstly
test code which validates certain design goals. The code itself is only written afterwards. The
TDD approach therefore gives a rapid feedback whether the code fulfills specified design criteria.
The main idea of TDD is the definition of the structure of a simple test language, which is
transformed to a source code and subsequently compiled. The test itself is therefore the most
important part of this approach.

The cycle of the test driven development framework can be described as follows:

e Creation of a test. Each design requirement has to be represented by one or more test files.
The developer creating a respective test must be provided with clear design requirements.

e Running of the created test with subsequent check of the test results. This checks the
correctness of the tested code if the test ran without errors.

e Modification of the code. If the test failed during its execution, the corresponding tested
code has to be changed to make the test pass. During this phase only minimal changes to
the code should be made.

e Code refactoring. The code can be further improved either in terms of functionality or
performance-wise. Existing tests guarantee that no regression bugs are introduced during
the process of refactoring.

If one wants to apply the TDD approach to software design, two basic rules should always
be respected:

1. Newer add new functionality until existing tests all pass;
2. Individual tests should cover as many lines of the tested code as possible, i.e. the code

coverage should be maximized.

Unit testing concerns with detailed testing of a relatively small piece of code. This fine
granularity is very useful in creation of complex programs where individual functions are difficult
to validate in real operation. Under unit testing we understand tools and methodology which
serve to validate the correct functionality of the tested code. The testing process consists of
three phases:

1. Creation of the test plan

e state main ideas and plans
e select the properties which should be tested

e filter plans and ideas
2. Creation of the set of tests

e propose a set of tests
e filter out the tests

3. Examination of the test results in terms of
e correctness (test passed, test failed)

e performance, i.e. runtime of each test

In the next section we describe a MATLAB toolbox which implements the TDD approach
in spirit of the above mentioned description.

3 Toolbox for unit testing

As already pointed out in the introduction, the toolbox allows users to write unit tests, execute
them in an automated fashion, collect test results, compare them against expected results and
visualize the total test run. In order to write suitable unit tests, the toolbox provides several
functions which trigger an error message when the result of a tested function doesn’t meet
requirements. To illustrate this behavior, let’s consider the following sample unit test, which
validates the correctness of the implementation of a sin function:

. function test_sinil

1
2.
3. a = sin(pi)

4. asserttolequal(a, 0)
5

6

7

. a = sin(pi/2)
. asserttrue(a == 1)

Every such unit test starts with a function preamble, followed by the test name (in this
case test_sinl). Then, on line 3 the tested function is executed for the selected value of the
input argument pi. Subsequently, the actual outcome of the function is compared against the
expected value by means of the asserttolequal function. This function, as its name already
hints, expects that the first argument a is tolerance-equal to the second argument. In other
words, the function will stop the execution if a differs from zero by more than a tolerance. By
default, the tolerance is set to 1 - 1078, Another possibility is represented by the asserttrue
function. This function will pass through if its argument is true. In other words, if the condition
a==1 is not fulfilled, the asserttrue function will stop the execution of the test with an error
message.

Usually, a complex software package is tested by means of a high number of tests. These
individual test files are best to be divided into subdirectories, following the directory structure
of the developed software package. Once such an organization of unit tests is available, the
toolbox allows to execute all tests in a respective directory by using the following command:

D = testdrive(’/path/to/directory/’)

Once such a command is executed, the toolbox first searches for all tests contained in the
specified path. All subdirectories located in the root folder are searched recursively. Once all
test files are located, the toolbox executes them automatically. The test can either pass, or fail.
A test can fail due to several reasons. Either its run was aborted by one of the assert functions,
which indicates a misbehavior of the tested function; or the tested function alone failed due
to an error in its implementation. The latter case is even more serious, as it can indicate, for
instance, a typo in the code, or an unhandled exception.

If a given test passes, the toolbox provides another measure to verify the correctness.
Specifically, it can compare the outputs the function has printed to the screen versus expected
outcomes stored in a text file. The expected outcomes have to be stored in a file with the .out
extension, whereas the file has to have the same name as the test itself. For illustration, consider
the following unit test:

1. function test_rootsil
2.
3. roots([1 2 3])

Once such a test is executed and the function roots is implemented correctly, it should print
the following lines of the screen:

ans =

-1.0000 + 1.4142i
-1.0000 - 1.4142i

The user can then create the file test_rootsl.out and put an expected output there, for
instance:

answer =

-1.0000 + 1.4142i
-1.0000 - 1.4142i

Notice that in this case the two outcomes differ only in the name of the output variable (ans vs.
answer). In this case the toolbox will denote the test as wrong, because it has passed without
any MATLAB errors, but its outcome doesn’t correlate to the expected outcome

When the D = testdrive(...) command is executed, it runs the tests found in respective
directories. For instance:

Looking into "testy/"... found 6 test(s)
Running testy/testl
Running testy/test2
Running testy/test3
Running testy/test4

Error using ==> test4 at 4
user error

Running testy/testb

Error using ==> testb at 5
output is wrong

Running testy/test6

Here we see how the toolbox searched the testy directory and found 6 tests in total there.
Subsequently all these six tests have been executed. As can be seen, all tests passed successfully,
except of tests no. 4 and 5, which have been aborted by an error. The overall test run is then
characterized by means of the build object D:

RESULTS:

0K testy/testl
0]¢ testy/test2
SKP testy/test3
ERR testy/test4
EXF testy/testb
WRO testy/test6

As the printout says, tests no. 1 and 2 finished with the OK status, which means that the tests
didn’t generate any errors. Test no. 3, on the other hand, was skipped on user’s behalf. Test no.
4 ended up with an error, while test no. 5 also failed, but this time the failure was expected (the
result code EXF stands for ezpected failure). Finally, test no. 6 didn’t produce any errors, but
its actual output to the screen was different from the expected output stored in the respective
.out file.

When the whole series of tests is executed, following the TDD approach it is necessary to
fix the functions, whose tests have failed. Once the code is fixed, the tests have to be re-run. In

order to minimize the effort, the toolbox allows to run again only those tests which previously
failed. To do so, the user can filter out the results according to respective result codes. For
instance to select only those tests which failed with an ERR code, one could use

N = find(D, ’status’, ’ERR’)

which will create a new build object N representing only failed tests. One can then re-run these
tests by calling

D = run(N)

One can also use negation of statements. For instance to select all tests with return codes
different from OK, one can use

N = find(D, ’status’, ’70K’)

to select such tests. This filtering procedure helps the developer to focus only on a subpart of
the whole pile of tests, hence minimizing the computational load needed to execute them.

4 Conclusion

In this paper we presented a new MATLAB toolbox which can be used for unit testing. The
toolbox allows users to create, manage, and execute a pile of tests which verify the correctness
of the tested code. Furthermore, the toolbox allows to verify the actual outcomes of the tests
against expected outcomes. The toolbox is available upon mail request directly from the authors.

Acknowledgment

The authors are pleased to acknowledge the financial support of the Scientific Grant Agency
of the Slovak Republic under grants No. 1/3081/06 and 1/4055/07 within the framework of
the European Social Fund (PhD Students for Modern Industrial Automation in SR, JPD 3
2005/NP1-047, No 13120200115).

Ing. Michal Kvasnica

Institute of Information Engineering, Automation, and Mathematics
FCFT STU in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
e-mail: michal.kvasnica@stuba.sk

Ing. Lubos Cirka

Institute of Information Engineering, Automation, and Mathematics
FCFT STU in Bratislava, Radlinského 9, SK-812 37 Bratislava, Slovakia
e-mail: lubos.cirka@stuba.sk

