
SIMULINK MODEL CONVERTER FOR EMBEDDED
VIDEO ACCELERATOR

B. Kovář, J. Schier

Ústav teorie informace a automatizace AV ČR, v.v.i., Praha

P. Zemč́ık, A. Herout, J. Zuzaňák

Ústav poč́ıtačové grafiky a multimédíı
Fakulta informačńıch technologíı
Vysoké učeńı technické v Brně

Abstract

Image processing and computer vision algorithms have become important both
in the industrial applications and in the consumer applications of a our daily life.
Because of required data throughput and processing flexibility, an architecture
based on processors (DSP, processor core, etc.), connected with an accelerator
(programmable logical chip - FPGA) is sometimes advantageous.

A scripting language-based configuration engine for such an embedded system
is described and the design aspects of converting Simulink block diagrams into
this scripting language are discussed in the paper.

We outline a configuration tool tailored towards system combining both DSP
and FPGA, based on configuration/programming scripting language and with
a library of functions and modules for selected applications in signal and video
processing. Regarding to limitations of the RIPAC1 target platform, the data
representations and possible applications, we decided to prepare also our own
video and image I/O blockset.

1 Introduction

Image processing applications and computer vision methods become increasingly important
both in industrial applications and but in the consumer appliances of our daily life. Machine
vision is typically characterized by very high computational demands. While such demands
can be handled by standard computer or by a set of networked computers, such a approach is
not always suitable for various reasons (difficulties with programming, large dimension of the
architecture, high level of energy consumption, etc.). For these reasons, specialized hardware
architectures based on programmable logic (FPGA - Field Programmable Gate Array) or on
an architecture combining a processor (DSP, processor core, . . . ) connected with an accelerator
(FPGA) is sometimes advantageous for embedded systems. Let us note, though, that with the
recent advances in multicore low-power general-purpose processors and small-factor PCs, the
division becomes more hazy.

The DSPs have a nice hardware features – very fast multiple and accumulate instructions,
low energy consumption and easy to use architecture. On the other hand, they still suffer from
the disadvantages of all the sequential processors, such as lack of massively parallel data process-
ing, difficult bit manipulation, fixed data width, etc. On the contrary, FPGAs are designed with
fine-grain parallelism features, witch makes them well suited for massively parallel algorithms.
The weak points of FPGA are (with exceptions) in general relatively small on-chip memory
capacity (which is important for image processing applications) and also from relatively narrow
bandwidth memory interfaces, lack of wide-word processing units, and high cost of perform-
ing complex numerical operations, such as division, square root, logarithmic, exponential, and
goniometrical functions.

1Rapid prototyping tools for development of HW-accelerated embedded image- and video-processing applica-
tions – GA AV grant agency project 1ET400750408



The combinations of a DSPs and FPGAs are subject of research studies for several years
already [1, 2, 3, 4]. Although the main features of the above mentioned architectures are suitable
for combination, development of applications for such combinations is generally difficult since it
is needed to distribute the computational tasks between the processors and programmable logic;
therefore, the application development support tools and methodology are probably as important
as the potential of the architecture combining DSPs and FPGAs. A scripting language-based
configuration engine for such an embedded system is described and the design aspects of con-
verting Simulink block diagrams into this scripting language are discussed in the paper. We
outline a configuration tool tailored towards system combining both DSP and FPGA, based on
configuration/programming scripting language and with a library of functions and modules for
selected applications in signal and video processing.

Regarding to limitations of our target platform, the data representations and possible
applications, we decided to prepare also our own video and image I/O blockset.

2 Architecture Overview

The system used in our project is based on the Texas Instruments C64 series DSPs [5], linked with
the Xilinx Virtex II FPGAs [6]. At the time of the project beginning, these components were
used for favourable computational power/cost ratio. However, the architecture components and
the development methods are generally applicable for the similar next generation of the DSPs
and FPGAs. The proposed architecture consists of a a miniature ”core computational module”.

Figure 1: Photograph of the core computational module

The computational modules are placed on a PCI ”carrierboard” which provides their mutual
interconnection. Both the carrier and the modules were developed and manufactured by Camea,
s.r.o. (Ltd.).

Figure 2: Photograph of the motherboard carrying four computational modules



To exploit the features of the FPGA and DSP in the best possible way, it was decided
that the FPGA will mostly rely on data transfers and data storage provided by the DSP. The
FPGA is, therefore, connected to the peripheral bus interface of the DSP and is accessible as
a “set of registers” in the memory space of the DSP. Physically, the module is a small board
with surface mounted components (SMC-components). The module is thin to allow for itself
and the motherboard to occupy only one PCI slot. The photograph of the system can be seen
in Fig. 1. The carrierboard, which can carry up to four modules, contains the PCI interface
circuitry, additional memory controller unit, and the expansion and interface circuits. These
circuits are also built using FPGA chips so that interfacing of the modules to the motherboard
is not too complex. The photograph of the motherboard is presented in Fig. 2. The physical
layout of the board is a “full size PCI board” that occupies one PCI slot.

The basic setup of the motherboard and of the modules is done through a set of “C”
functions that are available in UNIX (Linux) and Windows version. These functions provide
means of PCI configuration, FPGA design upload, DSP software upload, etc. While these
functions are specialized for the motherboard, the FPGA designs and DPS software they upload
are generic and can be used in any configuration of the core computational modules.

3 Application Design

Big problem that the designer faces very often is how to pass from the algorithmic design to its
physical implementation. The “standard” approach to the application design would be to use
the tools provided by the component manufacturers, such as Texas Instruments Code Composer
Studio for the DSPs and Xilinx VHDL development tools for the FPGAs. Unfortunately, only
few application designers developing real-life image processing applications are familiar with
these tools. Moreover, the tools are rather expensive and their efficient use is not trivial. Also,
the application designers are rather used to use either high-level design and simulation tools or
standard C programming tools (GNU-C, Visual-C), combined with C-based image processing
libraries when developing new product.

3.1 Design with Simulink

One of the most commonly used high-level tools is Matlab and Simulink. It allows the designer
to put together a structural simulation very easily and quickly checking the algorithm or making
the necessary modifications to it. Working directly with any low-level implementation tool from
the start is simply not practical. Every small change in the algorithm may sometimes require
partial redesign of the whole implementation. Therefore an automatic link between the high-
level algorithmic design, like Simulink model, to some low-level implementation description, like
a VHDL or pre-compiled modules, would lead to great effort and time savings in the design
cycle.

The Simulink was chosen as the high-level design tool for two reasons. In the first in-
stance, the description of a common Simulink block is a quite similar to netlist of the physical
implementation. Secondly, the fact that Simulink makes it possible to design both behavioral
and structural designs just confirms our choice.

Unfortunately, the support for image processing and computer vision in the Simulink
without extensions (e.g. Video and Image Processing Blockset) is very limited. Regarding to
limitations of our target platform, the data representations and possible applications, we decided
to prepare our own video and image I/O blockset. Current version is capable of reading, writing
and displaying of image sequences stored on a local drive. Video files are directly supported by
Matlab. Each I/O block contains data conversion into appropriate format which is compatible
with hardware implementation. The blocks that perform image processing and computer vision
operations will be later included into the library of standard Simulink entities.



3.2 Simulink converter

The task of the converter utility is to transform the design the high-level Simulink description
to the configuration language for low-level implementation, to be interpreted by an embedded
interpreter.

The tasks of the converter can be defined as follows:

1. Analyze Simulink model and identify:

• common and user defined blocks and sub-systems,

• connections between blocks (and ports for multilevel models),

• blocks functions and parameters.

2. Based on collected information generate configuration language.

The configuration language has similar syntax rules as ANSI C/C++. Regarding to hard-
ware implementation, system model is analysed and the interconnected block sets are divided
into two groups: serial blocks and paralel blocks. These new structural properties are imple-
mented using following instructions:

b0 = serial_block {
function_1();
function_2();
..
function_n();

};

b1 = paralel_block {
function_1();
function_2();
..
function_n();

};

]

Each block is identified by its own index, e.g. b0. Block is then executed using command
execute block(b0). It is possible to use paralel blocks inside serial block and vice versa. The
syntax of functions inside each block is similar to C/C++ language.

f_output = f_input.function(parameter_1, parametr_2, ., parametr_n));

A simple Simulink scheme with the corresponding description in the configuration language
is described in Fig. 3.

b0 = serial_block {
c0 = pipe_from_file("input");

paralel_block {
c3 = c0.op_max();
c5 = c0.op_sin();
c2 = c0.op_min().op_gain(5);

};

paralel_block {
c6 = c2.op_sub(c3).op_add(c5);

};

c6.to_file("output");
};

execute_block(b0);



sin

sin

To File

output. mat

Subtract 1
Subtract

Min

min

Max

max

Gain

5

From File

input. mat

Min

min

Gain

5

sin

sin

thread_1

thread_2

thread_3

Subtract 1
Subtract

thread_4

Max

max

thread_2

Figure 3: Simple Simulink model used for demonstraion

In order to convert the Simulink scheme into the scripting language, the following steps
have to be taken:

• Determine blocks used in the model:

– Assign an index number to each block name

• Determine links between blocks

– Assign an index number to each link
– Determine the link names, if used

• Determine, which blocks are the source blocks, which are the sink blocks, and which blocks
are the intermediate blocks.

• Determine the data dependences and possible parallelism among the (groups of) blocks

• Using the information on the syntax of the scripting language, write out the script for the
system configuration.

4 Conclusions

An image processing architecture for raster image processing, based on a combination of the
DSP and FPGA, was outlined in the paper. One of the major obstacles in usage of such systems
— complicated application development — is addressed and the proposed solution is to use a
configuration language for overall application description and the C- and VHDL languages to
code the library of image processing functions. The conversion of the Simulink schemes to the
scripting language has been discussed briefly.

It should be noted that the proposed Simulink converter is not intended to replace sophisti-
cated tools such as VHDL coder or System Generator for DSP, rather to serve as a simple-to-use
tool in one well-defined, specific application field.

Acknowledgments

This work has been supported by the Grant Agency of the Academy of Sciences of the Czech
Republic under Project 1ET400750408.

References

[1] E. A. Hakkennes and S. Vassiliadis: Multimedia Execution Hardware Accelerator, In: Journal
of VLSI Signal Processing Systems, 28, p. 221-234, July 2001



[2] Zemč́ık P., Herout A., Crha L., Tupec P., Fuč́ık O.: Particle rendering pipeline in DSP
and FPGA, In: Proceedings of Engineering of Computer-Based Systems, Los Alamitos, US,
IEEE CS, 2004, p. 361-368, ISBN 0-7695-2125-8

[3] Crha L., Fuč́ık O., Zemč́ık P., Drábek V., Tupec P.: Inter Chip Communicating System
with Dynamically Reconfigurable Hadrware Support, Poznaň, PL, 2003, p. 311-312, ISBN
83-7143-557-6

[4] E. Moscu Panainte, K.L.M. Bertels, S. Vassiliadis: The Molen Compiler for Reconfigurable
Processors, In: ACM Transactions in Embedded Computing Systems (TECS), February
2007, Volume 6 , Issue 1

[5] TMS3B0C6711, TMS320C6711B Floating point Digital Signal Processors, Texas Instru-
ments, SPRS088B, USA, (available at http://www.ti.com)

[6] Virtex-E 1.8 V Extended Memory Field Programmable Gate Arrays, Xilinx, DS025-2 (v2.2),
USA, (available at http://www.xilinx.com)

Jan Schier, Bohumil Kovář
Ústav teorie informace a automatizace AV ČR
Pod vodárenskou věž́ı 4
182 08 Praha 8
Tel. +420-2 6605 2511
schier,kovar@utia.cas.cz

Pavel Zemč́ık
Ústav poč́ıtačové grafiky a multimédíı
Fakulta informačńıch technologíı
Vysoké učeńı technické v Brně
Božetěchova 2
612 66 Brno
Tel. +420 5 4114 1217
zemcik@fit.vutbr.cz


