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Abstract

Magnetic force between permanent magnets is calculated by the use of simple
models of magnetic dipoles or coupled volume and surface currents. The derived
integral formulae allow effective programming and calculation by MATLAB. The
computation time is acceptable. The uniform magnatisation was supposed and
the agreement between theory and experiment is good from technical point
of view. Model also calculates correctly effects that are difficult to measure.
Therefore, it will be a usefull mean in the design of modern apparatus. The
agreement with experiment can be further improved by the model refinement,
using the correct space distribution of magnetisation. However, it needs to
accelerate the computation, by the use of a cluster, for instance.

1 Introduction

MATLAB is a very simple, versatile and efficient system for numerical computation in electrical
engineering. Its main advantages are very effective calculations with matrixes, simple use of
complex numbers, intuitive and perfect graphics and a lot of standard and special functions.
For special purpose there is a lot of toolboxes. However, usually the basic system is an ideal
tool almost for all typical tasks of electrical engineering.

Thanks to the MATLAB advantages we have used this language for the special and non-
standard computation in the area of magnetism. Usually, the tasks in this area are solved by
the use of Finite Element Method (FEM). However, if the system is relatively simple, the choice
of simple model that takes into account all the basic features of the solved problem usually leads
to results that are acceptable in praxis.

Such a relatively simple problem is the calculation of repulsive force of permanent magnets
of ring shape. The practical motovation is to inovate special textile machine. In that machine
main problem is to eliminate high dynamic forces due to the moving parts. Standardly the force
is eliminated by the repulsive force generated by resine blocks. The inovation is to replace the
resine blocks by permanent magnets and use their repulsive force to perform magnetic breaking.

The simplest way of magnetic breaking realisation is the use two permanent magnets
oriented in order to produce repulsive force. Since the equilibrium state of repusive force is
instable (labile) in every case, the tangential force, normal to the repulsive one, will be every
time present in real devices. The simplest way for mechanical cancellation of the tangential is
the use of ring (annulus) permanent magnet shape.

Already from this simple problem descriprion it is clear that the system is not simple and
some unwanted effects exist. It is evident that the correct simulation of the system will help in its
realization and save expensive experiments. Such simulation of this simplest arrangement using
MATLAB will be the subject of the paper. Form the point of view of numerical calculations the
paper should demonstrate clearly the possibilities of this language.

Because of its extreme technical importance, a lot of methods for magnetic field and
especially magnetic force computation exists, starting from simplest ones based on Ampere’s
Law, going through physical models that usually use the Biot-Savart Law, and finishing by
the application of general modern Finite Element Method. At present time, the Amper’s Law
application is only the subject of textbooks [1], but both the physical models and FEM are used,
for instance physical models are used in Ref. [3], while FEM is a subject of paper [4].



Since the problem is a special one and requires some explanation, relatively extended
theory follows. All the formulae used for numerical calculations are presented in this part. Then
the model used in MATLAB scripts is outlined. Processing of experimental data follows. In
the section dealing with results typical graphs are presented and comparison with experiment
is made. The evaluation of results and recommendation for future woork are in the last part of
the paper.

2 Theory

In order to calculate the magnetic force, the magnetic field must be calculated first. Then
relatively simple formulae can be used for the force calculation. Referring to the application,
the only source of magnetic field is a permanent magnet of limited volume V . Elementary
(atomic) dipoles are supposed as the source of magentic field. We suppose that current I flows
in the (planar) closed loop and the area inside the loop is S. This source of magnetic field is
termed magnetic dipole. Its basic parameter, magnetic momentum, is defined by formula

~mp = I ~S (1)

where ~S is the vector of value S, directed normal to the area and its sense is given by flowing
current according to clockwise screw motion rule. The elementary magnetic dipole is a limiting
case of real dipole for current increasing to infinity and area (and all its dimensions) decreasing
to zero in such manner that the product (1) is finite, e.g.

~m = lim
I→∞
S→0

I ~S (2)

Magnetic field of permanent magnet is made by elementary atomic magnetic dipoles. The
superposition of elementary dipoles creates the magnetisation ~M , which is the basic material
parameter. Magnetisation ~M is defined as a magnetic momentum of unit volume of uniform
material. Therefore, the elementary volume dV exhibits an elementary magnetic momentum

~dm = ~MdV (3)

In all textbooks, for instance [1], it is stressed that there are two approaches for electric
or magnetic field decription according to the effects that the field produces:

1. Energy effects — the field potential can be used for potential energy calculation

2. Force actions — the field strength appears in simple formulae for force action

The magnetic field can be described either by the vector potential ~A or by the flux density
~B that appears in simple formula for force acting on electric current in magnetic field. The
vector potetial can be used in formulas for energy calculation, but the way is not simple and
straightforward in magnetism. The relation between two descriptions is given by formula

~B = rot ~A (4)

In principle, there are two basic pocedures for the computation of magnetic field: the
diffrenetial and integral ones. The differential approach was described in detail elsewhere [2],
therefore the integral approach will be outlined here and used for the calculation of magnetic
field. Again, for integral approach, there are two basic possibilities

1. Elementary dipoles

2. Coupled surface and volume currents



Both the methods use two types of coordinates or position vectors: material and field.
Material position vector has zero index, ~ro = (xo, yo, zo), for instace, and it denotes the position
of elementary dipole, current element etc. Field vector without any index, ~r = (x, y, x) for
instance, defines the point, at which the field is calcutaled. This abbreviation is often used for
difference of these vectors

~∆r = ~r − ~ro = (x− xo, y − yo, z − zo) (5)

The distance between source (material quantity position) and respose (field quantity position)
is denoted by

∆r = |~r − ~ro| =
√

(x− xo)2 + (y − yo)2 + (z − zo)2 (6)

In the following parts the model of elementary dipoles and coupled surface and volume
currents will be described separately and somewhat in detail.

2.1 Elementary Dipoles

Elementary magnetic dipole is a basic and probably the simplest source of magnetic field. This
formula is derived for vector potential in all the textbooks, for instance [1].

~A(~r) =
µo

4π

~mo × (~r − ~ro)
|~r − ~ro|3 =

µo

4π

~mo × ~∆r

(∆r)3
(7)

According to our convention, the dipole of momentum ~mo is in a position given by vector ~ro,
while the potential ~A is calculated in the position ~r. Other used symbols are defined in (5) and
(6). By the application of definition (4) to formula (7) the following formula can be derived for
flux density ~B of the elementary dipole of magnetic momentum ~mo in a position ~ro

~B(~r) =
µo

4π

(
3(~mo.(~r − ~ro))
|~r − ~ro|5 (~r − ~ro))− ~mo

|~r − ~ro|3
)

=
µo

4π

(
3~mo. ~∆r)
(∆r)5

~∆r − ~mo

(∆r)3

)
(8)

Since the magnetic field of permanent magnet is formed by its atomic elementary dipoles,
it can be calculeted by the superposition method. The superposition method supposes that in
the elementary volume dVo, given by position vector ~ro, there is a dipole with an elementary
moment (see also the equation (3))

d~mo = ~M(~ro) dVo (9)

Each elementary dipole of momentum (9) forms the elementary field given by equations (7) and
(8). The superposition of elementary fields is realized by integration of the above equations.
Vector potential of permament magnet of magnetisation ~Mo in volume Vo can be calculated
from formula

~A(~r) =
µo

4π

∫

(Vo)

~Mo(~ro)× (~r − ~ro)
|~r − ~ro|3 dVo =

µo

4π

∫

(Vo)

~Mo × ~∆r

(∆r)3
dVo (10)

The integration is made for the volume Vo, where the magnetic dipoles are present and mag-
netisation ~Mo is therefore nonzero.

Be the same way we will get the formula for magnetic field flux desity

~B(~r) =
µo

4π

∫

(Vo)

(
3( ~Mo(~ro).(~r − ~ro))

|~r − ~ro|5 (~r − ~ro))−
~Mo(~ro)
|~r − ~ro|3

)
dVo

=
µo

4π

∫

(Vo)

(
3 ~Mo. ~∆r)

(∆r)5
~∆r −

~Mo

(∆r)3

)
dVo

(11)



From the theroretical point of view, there is no difference between formula (10) and (11),
since the second formula was derived from the first one. However, from the computational point
of view, the more complicated formula (11) should be used, since it calculates the field directly,
while the use of a simple formula (10) requires numerical derivation, which is a source of big
numerical errors. This is the reason, why we declare both the formulae.

In the uniform magnetic field of flux density ~B only the mechanical momentum ~Mf given
by formula

~Mf = ~m× ~B (12)

acts on the elementary dipole of magnetic momentum ~m. If the field is nonuniform, also the
force ~F given by formula

~F = (~m grad) ~B (13)

acts on elementary magnetic dipole of magnetic momentum ~m. The components of the force ~F
are calculated from the formula (13) by the equations

Fx = mx
∂Bx

∂x
+ my

∂Bx

∂y
+ mz

∂Bx

∂z

Fy = mx
∂By

∂x
+ my

∂By

∂y
+ mz

∂By

∂z

Fz = mx
∂Bz

∂x
+ my

∂Bz

∂y
+ mz

∂Bz

∂z

(14)

We use the formulae (13) or (14) for the calulation of the force ~Fe acting on elementary
dipole of momentum ~m with position vector ~r from the field of another elementary dipole of
momentum ~mo positioned in point of vector ~ro. After the substitution of (8) into (13) or (14)
and rearrangements we get the formula

~Fe =
µo

4π

(
~m.~mo + mcmoc

|~r − ~ro|5 (~r − ~ro)− 5[~mo.(~r − ~ro)][~m.(~r − ~ro)]
|~r − ~ro|7 (~r − ~ro) +

3[~m.(~r − ~ro)]
|~r − ~ro|5 ~mo

)

=
µo

4π

(
~m.~mo + mcmoc

(∆r)5
~∆r − 5[~m ~∆r]2

(∆r)7
~∆r +

3[~m ~∆r]
(∆r)5

~mo

)

(15)

where

mc = mx, mc = my mc = mz for Fex, Fey, Fez respectively (16)

and

mco = mxo, mco = myo mco = mzo for Fex, Fey, Fez respectively (17)

The force = ~dF with which the permanent magnet of magnetisation ~Mo in volume Vo

acts on elementary dipole of momentum ~m with position vector ~r can be found analogically by
the use the formulae (11) instead of (8) After the substitution of (11) into (13) or (14) and
rearrangements we get the formula

~dF =
µo

4π

∫

(Vo)

~m. ~Mo(~ro) + mcmoc

|~r − ~ro|5 (~r − ~ro)dVo

−µo

4π

∫

(Vo)

5[~m.(~r − ~ro)][ ~Mo(~ro).(~r − ~ro)]
|~r − ~ro|7 (~r − ~ro)dVo

+
µo

4π

∫

(Vo)

3[~m.(~r − ~ro)]
|~r − ~ro|5

~Mo(~ro)dVo

=
µo

4π

∫

(Vo)

(
~m. ~Mo + mcmoc

(∆r)5
~∆r − 5[~m. ~∆r][ ~Mo. ~∆r]

(∆r)7
~∆r +

3[~m. ~∆r]
(∆r)5

~Mo

)
dV o

(18)



The meaning of symbols mc and mco is in equations (16) and (17).

The total force, by which two permanent magnets act one another, can be got from the
formula (18). Suppose that the permanent magnet of magnetisation ~Mo and volume Vo acts on
another permanent magnet of magnetisation ~M and volume V . The magnetic force can be got
by integration of elementary forces in (18)

~F =
∫

(V )

~dFdV =
µo

4π

∫

(V )

(∫

(Vo)

~m. ~Mo(~ro) + mcmoc

|~r − ~ro|5 (~r − ~ro) dVo

)
dV

−µo

4π

∫

(V )

(∫

(Vo)

5[~m.(~r − ~ro)][ ~Mo(~ro).(~r − ~ro)]
|~r − ~ro|7 (~r − ~ro) dVo

)
dV

+
µo

4π

∫

(V )

(∫

(Vo)

3[~m.(~r − ~ro)]
|~r − ~ro|5

~Mo(~ro) dVo

)
dV

=
µo

4π

∫

(V )

(∫

(Vo)

~m. ~Mo + mcmoc

(∆r)5
~∆r dV o

)
dV

−µo

4π

∫

(V )

(∫

(Vo)

5[~m. ~∆r][ ~Mo. ~∆r]
(∆r)7

~∆r dV o

)
dV

+
µo

4π

∫

(V )

(∫

(Vo)

3[~m. ~∆r]
(∆r)5

~Mo dV o

)
dV

(19)

This symbolic equation can be used for numerical calculation of magnetic force between two
permanent magnets.

2.2 Coupled surface and volume currents

This method is a quite different one. The textbooks on electromagnetics, for instance [1], show
that the effect of elementary magnetic dipoles is equivalent to the coupled currents that flow
both on the surface and in the volume of magnitized media, in general. For the density of
coupled volume currents the following equation is valid

~im(~ro) = rot ~M(~ro) (20)

The derivations in the operation rot are made by the material coordinates, which is symbolically
denoted by material position vector ~ro. The coupled surface currents have the density

~jm(~ro) = Rot ~M(~ro) = ~n× ( ~M2(~ro)− ~M1(~ro)) = −~n×M(~ro) (21)

where ~n is the surface normal from the magnetic body (index 1) to vacuum (index 2). In vacuum
the magentisation is zero, ~M2(~ro) = 01, in the body ~M1(~ro) = ~M(~ro).

As soon as both the surafce and volume current densities are given, the magnetic field flux
density can be calcuted by the Biot-Savart Law. Coupled volume currents produce the field

~B(~r) =
µo

4π

∫

(V )

~im(~ro)× (~r − ~ro)
|~r − ~ro|3 dV =

µo

4π

∫

(V )

~im × ~∆r

(∆r)3
dV (22)

while the field from coupled surface currents is given by formula

~B(~r) =
µo

4π

∫

(S)

~jm(~ro)× (~r − ~ro)
|~r − ~ro|3 dS =

µo

4π

∫

(S)

~jm × ~∆r

(∆r)3
dS (23)

1Strictly speeking, the material vector ~ro should not be used outside the body.



where S is the surface of magnetised body.

If the total volume or surface coupled current can be approximated by the curve current
I, the simplest formula can be used

~B(~r) =
µo

4π
I

∫

(c)

~to × (~r − ~ro)
|~r − ~ro|3 dl =

µo

4π
I

∫

(c)

~to × ~∆r

(∆r)3
dl (24)

where ~to is the tangential unit vector to the element dl in the direction of current on the curve
c in which the current I flows. This approximation can be used in practical calculation.

Very important conlusion follows from the use of the method of coupled currents. The
magnetic medium can be exactly replaced by coupled current (volume and surface) flowing in
vaccuum.

The magnetic force can be calCulated using the modifield fomula for Lorentz force. The
force aCting on the element of volume current ~imdV , element of surface current ~jmdS and
element of curve current I ~dl are given by respectively formulae

~dFv = (~im × ~B)dV

~dFs = (~jm × ~B)dS

~dFc = I(~dl × ~B)

(25)

After the substitution from coresponding equations (22) and (23) into (25) we will get
integral formulae for elementary force due to the permanent magnet of volume Vo anD surface
So, which is modelled by volume coupled currents ~iom and surface coupled currents ~jom

~dF =
µo

4π
~im(~r)×

(∫

(Vo)

~iom(~ro)× (~r − ~ro)
|~r − ~ro|3 dVo

)
dV

+
µo

4π
~jm(~r)×

(∫

(So)

~jom(~ro)× (~r − ~ro)
|~r − ~ro|3 dSo)

)
dS

(26)

The total force, by which the permanent magnet of volume Vo and surface So, modelled by
volume coupled currents of density ~iom and surface coupled currents of density ~jom, acts on the
permanent magnet of volume V and surface S, modelled by volume coupled currents of density
~im and surface coupled currents of density ~jm, is obtained by the integration of formula (26) on
the forced magnet

~F =
µo

4π
(
∫

(V )

~im(~r)×
(∫

(Vo)

~iom(~ro)× (~r − ~ro)
|~r − ~ro|3 dVo

)
dV

+
µo

4π

∫

(S)

~jm(~r)×
(∫

(So)

~jom(~ro)× (~r − ~ro)
|~r − ~ro|3 dSo)

)
dS

(27)

For the approximate calculation the substitution from equation (24) into the last formula
of (25) leads to integral formula for elementary force due to the approximate current Io flowing
on curve co applied to the current element with current I and direction ~dl

~dF =
µo

4π
IIo

~dl ×
∫

(co)

( ~dlo × (~r − ~ro)
|~r − ~ro|3 (28)

The total force between two approximated currents, I on loop c and Io on loop co can be got by
integration of (28)

~F =
µo

4π
IIo

∫

(c)

~dl ×
(∫

(co)

( ~dlo × (~r − ~ro)
|~r − ~ro|3

)
(29)



Especially formula (27) wil be used for calculation of the force between two permanent
magnets. On the other hand, the formula (29) can be used for calculation of the force action
between two loops, irrespective of the nature of currents.

3 Model

The used ring magnet was polarized in the direction of its thickness. In this practical case we have
made the basic assumption that the magnetization is uniform. Unfortunately, the supplier data
sheet also contains only one value of magnetization, more correctly its low and high limits. This
assumption is not valid exactly, since the magnetization is strictly uniform only in an ellipsoid.
Therefore, the uniform magnetization can be supposed with small errrors, if the magnet cross-
section is circle or ellipse. In the case of rectangular cross-section, the magnetization will not be
uniform at least near the edges.

At present time we have limited to the use of the model of coupled currents, since it
apperas to be simpler for numerial calculations. Moreover, the use of (free) currents is typical in
magnetic problems and calculations. Theerfore, the coupled current model better corresponds
to praxis and it is also better understandable.

Figure 1: Model of coupled surface currents

For supposed uniform magnetization no volume coupled currents are present and the the
surface current density is uniform. The surface currents flow on the circular surfaces of ring
magnets in opposite directions as it is schematically shown by dots and crosses in Fig. 1. Since
the magnetization is supposed to be uniform inside all the body volume, total 2 surface currents
of opposite direction of constant density exist and no volume currents are present. The magnetic
field can be calculated according to formula (23). If the surface currents are approximated by one
curve current near the central part of the magnet surface, the simplest formula for calculation
(24) can be used. The total force can be calculated by the second member of formula (27), as
only coupled surface currents exist. If the surface coupled currents are approxiamted by curve
currents, simple formula (29) is used.

Becuase of cylinder geometry, the cylindrial coordinates, radius r and azimuth angle α in
the magnet plane and z-coordinate along the magnet axis are used. The integration is performed
numerically by summation. Typical values of resolution are about one degree for azimuth and
about 10 values for z-coordinate. Two values of radius (inner and outer) are used. One point
of magnetic field requires two nested cycles calcualiton that are calculated twice for two values
of the radius. If the force is calculated, the numeber on nested cycles inceraseas to four ones,
if we neglect the cycles for radius. Therefore, the reqiured computation time for the force can
be considerably high. Some strategy is used for speeding the calculation, for esxample field and
elementary force symmetry, but the details are omitted here.

4 Experiment

Each model has practical meaning only in the case, if it is verified by experiment. In the ring
magnet appliaction two types of experiment were made.



1. Magnetic field measurement

2. Repuslive force measurement

Samples were permanent magnets with magnetisation of 1.2 T approximately. The magnet
shape was a ring, inner diameter of 25 mm, outer diameter of 70 mm and height of 4 mm. The
magnetic field was merasured on one magnet. For force measurements combinations of 1, 2 and
3 magnets accordingly oriented were used. Optimum results were obtained for 3 magnets, they
will be presented here.

Both the experiments were made on fully automated apparatus. The measurement of
magnetic filed consisted of a small number of points, as the Hall probe dimensions are relatively
large. Therefore, instead of the strict local value, the average value of magnetic flux density was
measured. Because of their small number, no direct data processing was necessary.

The repulsive force was measured both in the forward and backward motion of magnets.
More than 2000 data points was automatically measured and written into computer file. Since
some spred of points appeared, the immediate data processing was necessary. It consists of
three procedures: sorting, averaging and curve fitting. The sorting ensured that the data course
is monotonic, if eperimental errors are neglected. Then the data was grouped into about 100
groups and the average value and standard deviation were calculated for each group. The last
step was the force approxiamtion (Fa)by negative powers of distance z, e.g.

Fa(z) =
i=N∑

i=0

Aiz
−i =

i=N∑

i=0

Ai

zi
(30)

Several following figures illustrate the force data processing. Approximation of raw data
is in Fig. 2. Average values of 100 groups of data points and their approximation by polynom
of negative powers of maximum degree of 8 are in Fig. 3. Approximating coefficients are in
Fig. 4. The dominant powers are -3, -4 and -5. Relative errors for individual groups are in Fig.
5. For smal distances the relative error is acceptable, less than 10 %, however, near the end of
measured interval, the error is very high, much more than 50 %.

The approximation by negative powers was made by the standard MATLAB function
polyfit. Vector z of experimental z-coordinates was replaced by their reciprocal values zrec=1./z.
The graph in Fig. 2 or Fig. 3 is the output of these commands

coef= polyfit(F,1./z,8);
polyval(coef,1./z);
plot(z,F);

The programming in MATLAB is really very simple.

5 Results

Basic and key results will be presented in a graphical form predominantly. We prefer the
comparison of calculation with epxeriment whenever it is possible. The comparison of calculated
and measured magnetic flux density for three distances from magnet surface is in Fig. 6 thru
Fig. 8. The comparison with experiment was made for three distances from magnet surface:
zero distance in Fig. 6, medium distance in Fig. 7 and realtively large distance in Fig. 8. Just
on the surface of the magnet the agreement with experiment is not good at edges (see Fig. 60.
In other points on the surafce there is a relatively good agreement. For small distance from
the magnet (3 mm in Fig. 7) the agreement is good but small difference is still visible. The
agreement further improves with increasing distance from magnet, for distance of 5 mm. (Fig.
8) the deviations are practically due to the experimental errors.
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Figure 2: All measured data and their approximation

The comparison of calculeted force and its experimental measurement is in several follow-
ing figures. In Fig. 9 the calculation results and averaged experiment values are compared. The
agreement is relatively good. In the next Fig. 10 the calculated curve and curve approximating
averaged experiment values are presented. A systemetic deviation is visible. For lower distances
the calculation is above the experiment, for higher distances the calculated force is lower than
the measured one. Nevertheess, the agreement between theory and experiment is again relatively
good.

The force maximum and minimum values differ more than one order, therefore, the com-
parison on graphs with linear force scales, as those in Fig. 9 or Fig. 10 has low resolution for
small force values. More information can be got from relative deviation that is defined as

δF = 100
|Fc − Fexp|

Fc
(31)

where Fc is the calculated force and Fexp is the experimantal value of force, which is either
avareged point value or point on approximating curve.

The relative deviation for averaged experimental points is in Fig. 11. For high distance the
deviation is very high, it is due to the experimental inaccuracy. For lower values of distace (less
than about 50 mm) the deviation is between +20 % and -40 %. The relative deviation between
calculetd curve and curve approximating experimental points is in Fig. 12. The deviation varies
between +20 % and -60 %. However the magnetisation had to inccrease to 1.3 T (e.g. by 0.1
T) in order to shift the force graphs vertically, by about 20 %. This change can be explained
by the spread of magnet parameters. The flux density measuremetrs used another sample. No
repetitive measurements on the same samples and the same measurements on different samples
were made.

If the magnets are perfectly centered, only axial force axists, which was presented in Fig.
9 or Fig. 10. No mechanical momentum exists. The equibrium is lable, however, any small
deviation from exact centering leads to a radial force and mechanical momentum. The radial
force for relatively small deviation of 0.3 mm (the outer ring diameter is 70 mm) in the direction
of X-axis leads to a relatively large radial force presented by the graph in Fig. 13. This radial
force leads to the mechanical momentum along Y -axis. Its values are in Fig. 14. This momentum
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Figure 3: Average values of data and their aproximation

has tendency to rotate the magnets by 180o in order to replace repulsive force by the attractive
one. The equilibrium is therefore unstable in any case. No measurements of this force were
made, because of their complexity, difficulty and innacuracy.

The total coupled current is shown in the Fig. 13 and Fig. 14. The current is very high,
very difficult realizable practically. It confirms the quality of the permanent magnets.

6 Discussion

Insted of finite method application, the simple models were used both for the field of permanent
magnet calculation and for computation of repulsive force. Two different models were created.
The first model is based on the elementary magnetic dipole interaction. Its base part is the
computation of the field produced by the elementary magnetic dipole. The second model replaces
the magnet by coupled volume and surface currents. Basic integral equations were derived for
the field and force calculation for both the models.

The advantage the of dipole model is that it is better suited for programming. There is
a lot of scalar vector products, see formula (19), for instance, that do not requre any cycles
in MATLAB. But the numerical integration must be performed over the whole magnet vol-
ume, therefore, the force caluclation requres six nested cycles. On the other hand, any space
distribution of magnetization is possible, and the computation time does not incerease at all.

The coupled current model can ensure much faster computation. However, the program-
ming is little complicated, since there are vector products, see equation (27), for instance. If
the magnetisation can be supposed as uniform, the coupled current model requires four nested
cycles that shloud be performed twice, for inner and outer ring surface. For non-uniform mag-
netisation, the four nested cycles can remain, if the non-uniformity can be modelled by surface
coupled currents. However, if coupled volume currents are necessary, six nested cycles should be
used. Fortunately, coupled volume currents should usually flow only in a limited part of magnet
volume.

The numerical integration was performed by MATLAB. The coupled current model was
preferred from the only practical reason that the calculation is faster, as it was explained in
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Figure 4: Approximating polynom coefficients in bar graph

previous paragraph. Several scripts of different strategy and complexity were written in order
to improve the accuracy and the speed and to verify algorithms. The computation time differs
from about half minute to about 15 minutes. It depends mainly on the numebr of elements
used in numerical integration, further on the strategy, since the numerical integration can be
performed by several ways. Results shown in previous sections were made by the simplest script.

Both the physical models and Finite Element Method (FEM) are used in magnetic com-
putations at present time. For relatively simple structures physical models are used, for instance
in Ref. [2], while for complicated systems the FEM is preferred (Example of optimisation based
on FEM is in Ref. [3].). Of course, the best choice is the analytical solution. Unfortunately,
our system is too complicated, to be solved analytically, either by differential equations or by
integral formulae. On the other hand the system is simple enough to allow the modelling by
relatively simple models. Two basic moddels (elementary magnets and coupled currents) were
derived in detail.

Another general solution is FEM. The only advatage of FEM is that is can be applied
to any system in principle and the application is relatively simple, since a lot of commercial
systems exist. But there are serious disadvantages. Serious erros in the task definition cannot
be protected by the scommertial system. The user has no check at the calcualtion phase and
cannot verify it. The results are approximate and the output is in a set of points selected by
FEM, their position cannot be affected by the user.

The physical model, on the other hand, is opposite to FEM in many apects. The disad-
vantage is that the user must create the model and find integral formulae describing it. The
user alse must program the numeric integration. But the user has full check on program and
calculation. The user can verify the outpus by many ways. The results are exactly in points
selected by the user and their accuracy can be improved be increasing the number of elements
used in numerical integration. Unfortunately, also the computation time increases rapidly, which
is the unwated effect. Therefore, compromise between accuracy and time should be found.

Of course, the best case is analytical soulution. It is accurate at all the points.

As it was presented in section Results, the agreement with experiment is acceptable from
the technical point of view. Extensive experiments were not performed, only informative ones
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Figure 5: Relative errors for data groups

were realised, in order to verify experimentally new principle and method. No repetitive mea-
surements were performed. Therefore, the data may contain relatively large error, it may be
about 10 %. Then the calculation innacuracy is in the range of 20 % in the area of technical
interest, which is fully acceptable in the system simulation. Many other important results, as
radial force or momentums can be obtained. They can help in the proper system design.

Nevertheless, there is a systematic deviation between experiment and theory both in the
magnetic field and repulsive force distribution. Probably, it is a consequence of the simplest
used model that suppose uniform magnetization. Further model improvements require finding
of relibale magnetisation distribution.

Therefore, irrespective of the used method (physical model or FEM), the key question is
the correct magnetization distribution. The magnetization cannot be measured directly; the
only information is from the field at the surface and near it. Unfortunately, the measuring
accuracy of Hall probe is relatively low and only average values are measured. Abrupt changes
as in Fig 6 cannot be measured correctly, due to the Hall probe integration effect, for instance.

In general, the correct magnetization can be found from experimental data by the method
of trials and errors. Correction for magnetization, or coupled currents that are equivalent to the
magnetization, can be found from the differences between experiment and model. It requires a
lot of creative work. In order to make corrections in real time, a very fast numeric integration is
necessary. The optimum solution is to use parallel working computers, the cluster. The present
task of identical numeric integration in many points makes the cluster programming relatively
simple. The task is an ideal one for distributed calculation.

7 Conclusions

We have shown that universal language MATLAB can be very effectively used for a special
technical calculations. The advantage is a very simple programming, the only disadvantage is
a little low speed of computation, if we need detailed and accurate outputs. But it can be
improved by the use of parallel computing.

In the problem solution two physical models were derived and one of them (model of



Figure 6: Comparison of calculated and measured magnetic field on the magnet surafce

coupled currents) was used for extensive calculations. The model of coupled current is probably
the best model for a given arrangement. It main advantage is that the magnetic material is
replaced by currents in vacuum.

Since the agreement with experiment is good, the model can predict correctly a lot of
important features or real apparatus and save a lot of experimental work. Radial forces, pre-
sented in section Results, are an example of such important results that are difficult to measure.
Therefore, the present system can be used in computer aided design of apparatus.

The model improvement needs to find a correct space distribution of magnetisation. Since
the only solution is by the method of trials and errors, fast compotation is necessary to apply
the method effectively. The distributed calculation on a cluster is necessary.
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Figure 7: Comparison of calculated and measured magnetic field at distance of 3 mm from
magnet
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Figure 8: Comparison of calculated and measured magnetic field at distance of 5 mm from
magnet
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Figure 9: Comparison of calculated force and the averaged experimental data
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Figure 10: Comparison of calculated force with curve aprroximating experimental data
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Figure 11: Relative deviation from calculation for averaged points
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Figure 12: Relative deviation of calculated curve and the one approximated experimental data

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6

7

8

9

10

z [mm]

F
x [

N
]

Radial force ... Im 12 kA

Figure 13: Radial force for incorrect centering of 0.3 mm
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Figure 14: Mechanical momentum for incorrect centering of 0.3 mm


