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Abstract 

The paper deals with the design of robust controllers for uncertain SISO systems in 
the frequency domain. The approach is accomplished with the Edge Theorem and the 
Neymark D-partition method for the affine model. The proposed method guarantees 
the required degree of stability. The practical application is illustrated by the robust 
controller design for a Modular Servo System. 

1 Introduction 
For many real processes a controller design has to cope with the effect of uncertainties, which 

very often cause a poor performance or even instability of closed-loop systems. The reason for that is 
a perpetual time change of parameters (due to aging, influence of environment, working point changes 
etc.), as well as unmodelled dynamics. The former uncertainty type is denoted as the parametric 
uncertainty and the latter one the dynamic uncertainty. A controller ensuring closed-loop stability 
under both of these uncertainty types is called a robust controller. A lot of robust controller design 
methods are known from the literature [1], [2] in the time- as well as in the frequency domains. 

The focus of this paper is to show robust PID controller design to control angular velocity of 
a Modular Servo System for three working points, where two working points are identified with inertia 
load and one without inertia load. The method is based on the Edge Theorem and the Neymark D-
partition method considering uncertain system model with parametric uncertainties. The designer can 
specify a required closed-loop stability degree. 

2 Modular Servo System 
The Modular Servo System (MSS) consists of the Inteco digital servomechanism and open-

architecture software environment for real-time control experiments [4]. The measurement system is 
based on the RTDAC4/USB acquisition board equipped with a D/A and A/D converters. I/O board 
communicates with the power interface unit. The whole logic necessary to activate and read the 
encoder signals and to generate the appropriate sequence of the PWM pulses to control the DC motor 
is configured in the Xilinx® chip of the RT-DAC/USB board. All functions of the board are accessed 
from the Modular Servo Toolbox, which operates directly in the MATLAB Simulink environment [3].  

The MSS consists of the following modules arranged in the chain: the DC motor with the 
generator, inertia load, encoder, magnetic brake and the gearbox with the output disk depicted in Fig. 
1. The system has no got an inner feedback for dead zone compensation. The accuracy of the 
measured velocity is 5% while the accuracy of the angle is 0.1%. The armature voltage of the DC 
motor is controlled by a PWM signal v(t) excited by a dimensionless control signal in the form u(t) = 
v(t)/vmax.  

In our experiment backlash module was not applied. The servomechanism is connected to a 
computer where a control algorithm is realised based on measurements of the angle and angular 
velocity. In our paper only the angular velocity was controlled. 

 



 

Figure 1: MSS mechanical construction 

3 Robust controller design using the Edge Theorem  
If a part of coefficients of the plant vary dependently, then it is better to use the affine model of 

the plant in the form: 
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where iii qqq ,∈  are uncertain coefficients. The coefficients depend linearly on uncertain 

parameter vector [ ]p
T qq ,...,1=q . The parameters qi vary within a p - dimensional box  

 { }piqqq iii ,...,1,,: =∈= qQ . (2) 

If we vary parameters 
ii qq =  or ii qq =  then is possible to obtain p2  transfer functions with 

constant coefficients; inserting them to the vertices of a p - dimensional polytope, the transfer function 
(1) describes a so-called polytopic system. Consider the controller transfer function in the form 
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where F1(s) and F2(s) are polynomials with constant coefficients. Then the characteristic polynomials 
with the polytopic system are  
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or in a more general form 

 ( ) ( ) ( )∑
=

+=
p

i
ii spqspsp

1
0,q  Q∈iq  (5) 

 

 

 



 

Theorem 1(Edge Theorem) 

The polynomial family (5) is stable if and only if the edges of Q are stable. � 

 

The simple stability analysis method for families of polynomials (edges of Q) is given in the 
following theorem. 

 

Theorem 2(Bialas) 

Let ( )a
nH  and ( )b

nH  be the Hurwitz matrices of  
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respectively. The polynomial family  
 ( ) ( ) ( ) ( ) [ ]{ }1,0,1, ∈−+= λλλ spspQsp ba  (7) 

is stable if and only if:  

1. ( )spb  is stable 

2. the matrix ( )( ) ( )a
n

b
n HH

1−
 has no nonpositive real eigenvalues. � 

 

Using the Edge Theorem, the controller design has to be applied to 4 vertices of the polytopic 
system; by applying e.g. the Neymark’s D-partition method guaranteeing the required closed-loop 
stability degree we choose the controller coefficients such that the vertices of polytopic system are 
stable. Then we have to check stability of each edge of the box Q by e.g. the Bialas Theorem. If any of 
the edges is unstable, new controller coefficients are to be chosen by Neymark’s method.  

 

4 Design of robust controller for Modular Servo System 
Consider the transfer functions of a angular velocity of the Modular Servo System obtained by 

identification in three working points: 

WP1: with inertia load;  

manipulated variable 4.0=u  [V]; regulated variable 54=y [rad/s]; 
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WP2: with inertia load 7.0=u  [V]; 5.117=y [rad/s];   
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WP3: without inertia load 7.0=u  [V]; 145=y [rad/s];  
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The Edge Theorem based approach uses the polytopic model: 
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where: ( ) 1269345-3748.350 += ssb ,  ( ) 395.5642475.1162
0 ++= sssa , 

( ) 752057.51 −= ssb ,  ( ) 005.4077.191 −−= ssa , 

( ) 125113515.36382 +−= ssb ,  ( ) 5557.658.555s2 +=sa  

qi  - uncertain coefficients 

 
The robust PID controller has been designed by Neymark’s D-partition method for 4 vertices 
of the polytopic system  
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Controller 1: 

The required degree of stability: 3.0=α  

where the gain 01.0=K , the integration time constant ][333.0 sTi =  and the derivative time 
constant ][003.0 sTd = . Stability has been verified for each edge of the box Q by Bialas Theorem 
and all eigenvalues of the Bialas matrices were not nonpositive real. Therefore, the closed-loop with 
polytopic systems and robust controller is stable and the achieved degree in 4 vertices is 08.2=α . 

 

Controller 2: 

The required degree of stability: 1.0=α  

where the gain 015.0=K , the integration time constant ][75.0 sTi =  and the derivative time 
constant ][00333.0 sTd = . Stability has been verified for each edge of the box Q by Bialas Theorem 
and all eigenvalues of the Bialas matrices were not nonpositive real. Therefore, the closed-loop with 
polytopic systems and robust controller is stable and the achieved degree in 4 vertices is 03.1=α . 

 

Controller 3: 

The required degree of stability: 0=α  

where the gain 04.0=K , the integration time constant ][2 sTi =  and the derivative time constant 
][0025.0 sTd = . Stability has been verified for each edge of the box Q by Bialas Theorem and all 

eigenvalues of the Bialas matrices were not nonpositive real. Therefore, the closed-loop with polytopic 
systems and robust controller is stable and the achieved degree in 4 vertices is 45.0=α . 



 

Figure 2:  Step responses in the first working point 
 

 

 

Figure 3: Step responses in the second working point 

 
 



 

Figure 4:  Step responses in the third working point  

 

Figures 2, 3 and 4 show the step responses designed robust controller in three working points.  

 

7 Conclusion 
The main aim of this paper has been to design a robust controllers with different stability degree 

for MSS (Modular Servo System). Edge Theorem method which guarantee the required closed-loop 
stability degree has been used. It is a paradoxical that in this case the best controller is controller with 
lowest stability degree.  
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