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Abstract

The discrete wavelet transform (DWT) has proved very valuable in a large scope
of signal processing problems. However, in many applications, it reaches its limi-
tations, such as oscillations of the coefficients at a singularity, lack of directional
selectivity in higher dimensions, aliasing and consequent shift variance. To over-
come these problems, the complex wavelet transform (CWT) employs analytic
filters, i.e. their real and imaginary parts form the Hilbert transform (HT) pair,
securing magnitude-phase representation, shift invariance, and no aliasing. The
CWT strategy, that we focus on in this paper, is Kingsbury’s and Selesnick’s
dual tree CWT (DTCWT). This moderately redundant multiresolution trans-
form with decimated subbands runs in two DWT trees (real and imaginary) of
real filters producing the real and the imaginary parts of the coefficients. Due
to its shift invariance and improved directional selectivity, the DTCWT outpre-
formes the critically decimated DWT in a range of applications, such as, motion
estimation, image fusion, edge detection, texture discrimination and denoising.
In the final part of this paper, we present biomedical CT image denoising by the
means of thresholding magnitude of the wavelet coefficients.

1 Introduction to Complex Wavelet Transform

The critically sampled discrete wavelet transform (DWT) has been successfully applied to a wide
range of signal processing tasks. However, its performance is limited because of the following
problems [7].

• Oscillations of the coefficients at a singularity (zero crossings)

• Shift variance when small changes in the input cause large changes in the output

• Aliasing due to downsampling and non-ideal filtering during the analysis, which is cancelled
out by the synthesis filters unless the coefficients are not altered

• Lack of directional selectivity in higher dimensions, e.g. inability to distinquish between
+45◦ and −45◦ edge orientations

To overcome the shift dependence problem, we can exploit the undecimated (over-complete)
DWT, however, without solving the directional selectivity problem. Another approach is inspired
by the Fourier transform, whose magnitude is shift invariant and the phase offset encodes the
shift. In such a wavelet transform, a large magnitude of a coefficient implies the presence of a
singularity while the phase signifies its position within the support of the wavelet. The complex
wavelet transform (CWT) employs analytic or quadrature wavelets guaranteeing magnitude-
phase representation, shift invariance and no aliasing.

An analytic wavelet ψc(t) = ψr(t) + j · ψi(t) is composed of two real wavelets ψr(t) and
ψi(t) forming a Hilbert transform (HT) pair which means that they are orthogonal, i.e. shifted
by π/2 in the complex plain [9]

ψi(t) = HT{ψr(t)} =
1
π

∫ ∞

−∞
ψr(t)
t− τ

dτ = ψr(t)
1

π t
(1)
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Figure 1: Comparison of the frequency spectra of a real and an analytic wavelet at level 4 both
based on 14-tap filters presenting (a) a Daubechies wavelet curve, (b) its magnitude frequency
spectrum, (c) a q-shift complex wavelet from [4] composed of a real and an imaginary wavelet
forming an approximate Hilbert pair, and (d) its almost single-sided spectrum suppressing
negative frequencies.

and for their Fourier transform pairs Hr(ω) and Hi(ω)

Hi(ω) = FT{HT{ψr(t)}} = −j · sgn(ω)Hr(ω) (2)

The crucial merit of quadrature filters is their single-sided Fourier spectrum eliminated to zero
for negative frequencies ω < 0. Thus half the bandwidth is spared and aliasing is greatly reduced
which is substantial for desired shift invariance. Fig. 1 demonstrates the difference between the
spectrum of a real and a quadrature wavelet.

Design of analytic wavelets presents a problematic task. As the HT is global in nature,
e.i. infinitely extended in both time and frequency domain, the HT pair of a wavelet function
with finite (compact) support has infinite support [7]. As a result, the designed wavelets can be
only approximately analytic, shift invariant, and aliasing-free.

Other desirable properties [9] of wavelet filters are orthogonality securing energy preser-
vation in the transform domain, linear phase response avoiding nonlinear phase distortion and
consequent artifacts in the reconstructed signal, symmetry helping us to handle the boundary
problem, regularity and compact support. Unfortunately, it is extremely difficult to include all
these characteristics in a single wavelet design. For example, in two-channel filter banks, filter
impulse response cannot be both symmetric and orthogonal except the Haar solution [1]. To
introduce more degrees of freedom in filter design, we use biorthogonal bases that also provide
simpler solution for linear phase response.

Basically, there are two main streams of the CWT wavelets design. The first one aims to
produce ψc(t) forming orthonormal or biorthogonal bases. This strong constraint complicates
dealing with the limitations of the DWT mentioned above. As an example of this approach, let
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Figure 2: (a) Q-shift DTCWT 3-level analysis scheme [4].

us mention projection based CWT based on work of Fernandes and Spaendock [6] resulting in
orthogonal IIR filters solutions. Projection means converting a real signal to analytic (complex)
form through digital filtering. This nonredundant method seems promising in image or video
compression.

The second designing philosophy is redundant representation of signals. The method
that we focus on in this paper is Kingsbury’s and Selesnick’s [7] Dual-Tree CWT (DTCWT)
employing ψc(t) whose real and imaginary parts ψr(t) and ψi(t) individually form orthogonal or
biorthogonal bases. This technique utilizes two filter bank trees and thus is 2d : 1 redundant in
d-dimensional space which is still far less expensive than the undecimated DWT.

2 Dual-Tree CWT

Similarly to the DWT, the DTCWT is a multiresolution transform with decimated subbands
providing perfect reconstruction of the input. In contrast, it uses analytic filters instead of
real ones and thus overcomes problems of the DWT at the expense of moderate redundancy.
Running in two DWT trees a and b (real and imaginary) of real filters, this transform produces
real and imaginary parts of the coefficients. The DTCWT decomposition scheme is shown in
Fig. 2.

The wavelet functions ψr(t) and ψi(t) producing the complex wavelet ψc(t) form an ap-
proximate HT pair. The same applies to the scaling functions φr(t) and φi(t). Hence the lowpass
filters of both trees h0a, h0b, same as the highpass filters h1a, h1b, are in approximate quadrature.
The synthesis filters of each tree g0a, g1a and g0b, g1b form orthogonal or biorthogonal pairs with
the corresponding analysis filters h0a, h1a and h0b, h1b. The wavelet and scaling functions are
related to the corresponding filters through the dilation and wavelet equations [2]

φr(t) =
√

2
∑
n

h0a(n) φr(2t− n) (3)
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Figure 3: Approximate shift invariance according to percentual changes of subband energy of
the DTCWT in comparison with the DWT. (a) An image conveying a triangular object, (b) the
same image altered by a shift of the object, (c) absolute percentual changes of subband energy
averaged over all subbands at levels from 1 to 4, (d) two levels of the DTCWT decomposition
using near-symmetric 13,19-tap filters at stage 1 and q-shift 14-tap filters from [5] past stage 2
and percentual changes of subband energy after the shift in the image, and (e) the same for the
DWT exploiting Daubechies length-14 filters.

ψr(t) =
√

2
∑
n

h1a(n) φr(2t− n) (4)

where t denotes continuous time and n the discrete time index. Similarly for φi(t), ψi(t) from
h0b(n) and h1b(n).

The scheme in Fig. 2 employs Kingsbury’s q-shift filters [5] where q stands for quarter
sampling period. Filters ho

0a, ho
1a, ho

0b, and ho
1b of the first level are different from the others and

we may use biorthogonal filters of our choice. To pick up opposite samples of the input in both
trees, there is a one-sample offset between trees a and b. Past level 1, we use q-shift filters of a
chosen length and the delays in one tree are 1/2 sample different form the opposite tree in order
to get uniform interval between the samples of both trees and to satisfy the half-sample delay
condition [7].

The half-sample delay condition is derived from a strategy of designing filters so that the
wavelets generated by them form the Hilbert transform pair. This happens when the scaling
filters h0a and h0b are offset from one another by a half sample [2]

h0b(n) = h0a(n− 0.5) (5)

As a result, the lowpass filters of one tree interpolate midway between the lowpass filters of
the other tree and the DT-CWT is shift invariant. In the frequency domain, the magnitude
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Figure 4: Histograms of the wavelet coefficients at level 3 with corresponding thresholding limits
(in magenta). (a) Magnitudes of the DTCWT coefficients of the HiHi subband oriented at +45◦

and (b) the DWT coefficients of the HiHi subband oriented at ±45◦. The x-axis limits of both
plots are reduced for better visibility.

condition is given by [7]
|H0b(ejω)| = |H0a(ejω)| (6)

and the phase condition runs [7]

6 H0b(ejω) = 6 H0a(ejω)− 0.5ω (7)

Unfortunately, the half-sample delay condition cannot be implemented with FIR filters (not
even rational IIR filters) [2]. Filters with compact support always have a certain non-zero gain
in their stopbands and aliasing cannot be eliminated. As an implication, the wavelet functions
can be only approximately analytic and the DTCWT only approximately shift invariant and
free from aliasing. Filters are designed to fulfil either (6) or (7) and only approximately satisfy
the other. In case of q-shift filters, (7) is not exactly satisfied. [7].

Figure 3 presents approximate shift invariance of the 2-dimensional (2D) DTCWT in
comparison with the DWT. The DTCWT exhibits smaller percentual subband energy changes
after a shift of a triangular object in a binary image.

Apart from that, the 2D DTCWT also more selectively discriminates features of various
orientations. While the critically decimated 2D DWT outputs three orientational selective sub-
bands per level conveying image features oriented at the angles of 90◦, ±45◦, and 0◦, the 2D
DTCWT produces six directional subbands per level to reveal the details of an image in ±15◦,
±45◦ and ±75◦ directions with 4:1 redundancy.

Due to its shift invariance and improved directional selectivity, the DTCWT outperforms
the critically decimated DWT in a range of applications, such as, motion estimation, image
fusion, edge detection [9], texture discrimination [8] and denoising. In this paper, we exhibit
biomedical CT image denoising by the means of thresholding magnitude of the wavelet coeffi-
cients.

3 Biomedical Image De-Noising

In this section, we endeavour to remove noise from a Computed Tomography (CT) image of the
brain shown in figure 6a. It is a greyscale image displayed with ’jet’ colormap.

To determine the approximate amount of noise contained in the image, we estimate the
Signal to Noise Ratio (SNR) from

SNR = 20 · log10
Imax − Imin

σn
(8)



 (a) ORIGINAL CUT 44.15dB

 (b) AFTER DTCWT DENOISING 46.41dB  (c) DTCWT: RESIDUALS

 (d) AFTER DWT DENOISING 46.18dB  (e) DWT: RESIDUALS

Figure 5: The CT image denoising by wavelet shrinkage displaying cuts of (a) the original image,
(b) the image after denoising by shrinking magnitudes of the DTCWT wavelet coefficients,
(c) the corresponding difference image, (d) the image after thresholding the DWT wavelet
coefficients, and (e) the corresponding difference image.

where the difference between the maximum and the minimum pixel value Imax and Imin, re-
spectively, represents the dynamic range of the image and σn is the standard deviation of the
noise estimated from the areas that do not content any image component.

Denoising is carried out by wavelet shrinkage exploiting both the DWT and the DTCWT.
In case of the DTCWT, we threshold the coefficients’ magnitudes, not the real and imaginary
parts separately. This approach is more convenient because the magnitude varies slowly and is
not distorted by aliasing [7].

Figure 4 displays histograms of the wavelet coefficients of both transforms for a selected
subband. The corresponding threshold limits for soft thresholding are depicted in magenta. To
estimate these limits for each wavelet subband up to level 3, we use the HEURSURE method [3]
- a heuristic variant of adaptive threshold selection by Stein’s Unbiased Risk Estimate proposed
by Donoho and Johnstone. The values estimated by this method do not appear sufficiently
high for noise removal. That is why we multiply the estimated limits with a constant selected
according to the trade-off between the SNR measure and a subjectively perceived degree of
blurring. The results along with the corresponding SNRs are displayed in figure 5. Neither of
the difference images seems to convey much of a correlated information from the original image.
Figure 6b and c presents residuals of the whole images. We may observe a circular curve at the
edge of the CT imaging area (no information) and a smaller one corresponding to the skull (we
are interested in soft tissues, so no important information either). On the other hand, owing
to the chosen threshold selection method, this experiment does not utterly demonstrate the
advantages of the DTCWT over the DWT.



Figure 6: Residuals after denoising by adaptive-threshold wavelet shrinkage using the HEUR-
SURE method of threshold selection. (a) The original axial CT image of the brain, (b) the
difference between the original and the result of denoising by thresholding magnitudes of the
DTCWT wavelet coefficients, and (b) the residuals after thresholding the DWT wavelet coeffi-
cients.

In future research, we shall carry out more denoising experiments on different images
utilizing various threshold estimation techniques. We shall focus in particular on denoising based
on statistical models of wavelet coefficients and take the advantage of stronger dependence of
the DTCWT magnitude in interscale and intrascale neighborhoods [7].

4 Conclusions

In this paper, we describe the reasons why the Discrete Wavelet Transform (DWT) functions
insufficiently in some of signal processing tasks due to strong shift dependence, lack of direc-
tional selectivity, aliasing, and oscillations of the coefficients. To solve these problems, various
Complex Wavelet Transform (CWT) algorithms have been proposed to represent an input signal
by the magnitude and phase, where the magnitude is shift invariant and the phase offset encodes
the shift. One of redundant CWT representation techniques is the Dual-Tree CWT (DTCWT)
introduced by Kingsbury and Selesnick. This transform solves the problem of analytic (quadra-
ture) filter design at the expense of 2d redundancy in d-dimensional space. The DTCWT due to
its approximate shift invariance and improved directional selectivity outperforms the DWT in a
wide range of applications. We demonstrate denoising of a CT image by soft wavelet shrinkage
using both the DWT and the DTCWT. In this experiment, the advantages of the DTCWT
are not properly revealed. In future, we shall increase the performance gap between these two
transforms by threshold limit selection based on statistical models of wavelet coefficients.
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Technická 1905, 166 28 Prague 6
Phone: +420 22435 4198, Fax: +420-22435 5053
E-mail: A.Prochazka@ieee.org, Eva.Hostalkova@vscht.cz


