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 Abstract 

Surfaces of the same spatial error of an identified point are numerically resolved and 
displayed subsequently. The surfaces pictorially express relation between problem 
configuration and precision of an identified point. 

1 Introduction 

The error model of geodetic task addresses precision of position determination of one or more 
points. The model solution results in covariance matrix that will allow for design of error ellipse (for 
2D tasks) or error ellipsoid (for 3D tasks) as a comprehensive precision characteristic. The error model 
is described e.g. in [1], [2], [3], [4] in detail. 

The error model has been used to resolve configuration of spatial (3D) distance intersection.  
Surfaces of the same spatial error (isosurface) of an identified point are numerically resolved and 
displayed subsequently. The isosurfaces pictorially express relation between problem configuration 
and precision of an identified point.  

Besides the necessity to plot isosurfaces to a plane, there is another problem with closeness of 
surface where „greater“ surface hide „smaller“ surface in themselves. For better transparency, surfaces 
are displayed in separate Figures and cross sections are used in some cases.  

 

2 The principle of spatial distance intersection  

Given:  
Three points through their coordinates (A, B, C). See the Figures for coordinates of the specified 
points, values are in metres. 

Measured: 
Three distances between identified point (P) and given points – sPA, sPB, sPC. Spatial distance 
intersection has been resolved for distance precision ms = 3 mm. 

Solvability:  
If the three given points are not in line, the problem has: 
a) one solution if the distances intersect in the plane determined by the given points, 
b) two solutions if the distances intersect outside the plane. Solutions are then plane symmetric where 

the plane of symmetry is given by the given points, 
If the three given points are lying on one line, the problem has: 
a) one solution, if the distances determine point on this line (at the same time, the distances lay on 

this line where two of the distances are sufficient to identify the point), 
b) Infinite number of solutions if the distances intersect outside the line. Solutions include all points 

of a circle given by the distances (two of the distances are sufficient to identify the circle). 



Jakobi´s matrix for the error model: 
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3 Numeric solution of isosurfaces 

The solution took place in the Matlab program in two steps programmed in separate M-files: 
1. spatial error has been calculated for a regular network of points in space (interval 20 m) using 

the model solution, 
2. isosurfaces for specific values of the mean spatial error (mPR) have been calculated and 

displayed subsequently using the functions of patch, isosurface and isonormals. The specified 
functions defined as simple commands in Matlab allowed for the following: 

a. solution of a complex spatial interpolation to determine behaviour of isosurfaces, 
b. easy subsequent display of such isosurfaces.  

For examples of resulting isosurfaces see Figures 2 through 8. 

4 Assessment of configuration effect 

Three given points form a triangle which may have different shape; basic assessment is done for 
equilateral triangle. Three given points define a plane, which is the plane of symmetry of the spatial 
error isosurfaces; the assessment is carried out for one of symmetric parts. 

The point where the distances intersects under right angles is determined most precisely (Fig. 1). 
The isosurfaces form the surface of a flattened solid (Fig. 2) stretching in the direction of the given 
points with the error increasing (Fig. 3). When the spatial error increases further, the isosurfaces 
converge into a spherical surface passing through the given points (Figs. 4 and 6). 

If the given points form an acute-angled or obtuse-angled triangle, the isosurfaces of small 
values of spatial error will change according to Figures 7 and 8 (compare to Fig. 2 and 3). With 
increasing error values, differences in isosurfaces are smaller, they converge into spherical surface 
again. 

Figure 1: Optimum configuration of spatial distance intersection.   



5 Conclusion 

The procedure used, combining a model solution of a geodetic task and potential of the Matlab 
software, has shown to be very appropriate for design and visualization of isosurfaces of constant 
spatial error of a point to be identified.  
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Figure 2:  Isosurface for mPR = 5.5 mm, given points form an equilateral triangle. 



 

Figure 3:  Isosurface for mPR = 6.0 mm, given points form an equilateral triangle. 

Figure 4:  Isosurface for mPR = 8.0 mm, given points form an equilateral 

triangle.  



    
            

Figure 5:  Section through isosurfaces for mPR 5.3 mm, 6.0 mm, 7.0 mm, 
                given points form an equilateral triangle. 

 



Figure 6:  Isosurface for mPR = 15.0 mm, given points form an equilateral triangle. 

Figure 7:  Given points form an obtuse-angled triangle, values of mean spatial error: 

 a) mPR = 7.0 mm, b) mPR = 8.0 mm. 

a) 
b) 
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    Figure 8:  Acute-angled triangle, values 

of mean spatial error: 

a) mPR = 5.5 mm, 

b) mPR = 6.0 mm, 

c) mPR = 7.0 mm. 

b) 

a) 

c) 


