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Abstract

Surfaces of the same spatial error of an identifiegpoint are numerically resolved and
displayed subsequently. The surfaces pictorially gxess relation between problem
configuration and precision of an identified point.

1 Introduction

The error model of geodetic task addresses precidigosition determination of one or more
points. The model solution results in covariancérmahat will allow for design of error ellipsedif
2D tasks) or error ellipsoid (for 3D tasks) as mpoehensive precision characteristic. The errorehod
is described e.g. in [1], [2], [3], [4] in detall.

The error model has been used to resolve configaratf spatial (3D) distance intersection.
Surfaces of the same spatial error (isosurfacednofdentified point are numerically resolved and
displayed subsequently. The isosurfaces pictoriadgress relation between problem configuration
and precision of an identified point.

Besides the necessity to plot isosurfaces to aeplinere is another problem with closeness of
surface where ,greater” surface hide ,smaller” acefin themselves. For better transparency, swface
are displayed in separate Figures and cross sedierused in some cases.

2 The principle of spatial distance intersection

Given:

Three points through their coordinates (A, B, Sge the Figures for coordinates of the specified
points, values are in metres.

Measured:
Three distances between identified point (P) andergipoints — &, s Sc Spatial distance
intersection has been resolved for distance pmtmi = 3 mm.

Solvability:

If the three given points are not in line, the peob has:

a) one solution if the distances intersect in tlh@e determined by the given points,

b) two solutions if the distances intersect outsigeplane. Solutions are then plane symmetric &her
the plane of symmetry is given by the given points,

If the three given points are lying on one line groblem has:

a) one solution, if the distances determine pomttos line (at the same time, the distances lay on
this line where two of the distances are suffictentlentify the point),

b) Infinite number of solutions if the distanceteinsect outside the line. Solutions include allng®i
of a circle given by the distances (two of theatises are sufficient to identify the circle).



Jakobi’s matrix for the error model:

OSpy  OSpy  OSpy _AXpy  _AYp  _AZy,
0Xp, 0Y, 07, Spa Spa Spa
IX)=A, = Ospg  OSpgy  OSpg |_| _AXpy _AYpy _AZpg
L oX, oY, 97, Spp Spe Spp
0Spc  0Spc  OSpe CAXpe AYpe AZp
0X, 0Y, 0Z,

Spc Spc Spc

3 Numeric solution of isosurfaces

The solution took place in the Matlab program i steps programmed in separate M-files:

1. spatial error has been calculated for a requéawork of points in space (interval 20 m) using
the model solution,

2. isosurfaces for specific values of the meaniapatror (rer) have been calculated and
displayed subsequently using the functionpaith isosurfaceandisonormals The specified
functions defined as simple commands in Matlabvwadi for the following:

a. solution of a complex spatial interpolation &aefmine behaviour of isosurfaces,
b. easy subsequent display of such isosurfaces.
For examples of resulting isosurfaces see Figuthso2gh 8.

4 Assessment of configuration effect

Three given points form a triangle which may haifetent shape; basic assessment is done for
equilateral triangle. Three given points definelanp, which is the plane of symmetry of the spatial
error isosurfaces; the assessment is carried oohi of symmetric parts.

The point where the distances intersects undet aighles is determined most precisely (Fig. 1).
The isosurfaces form the surface of a flattenettl §6lig. 2) stretching in the direction of the give
points with the error increasing (Fig. 3). When #patial error increases further, the isosurfaces
converge into a spherical surface passing throglgiven points (Figs. 4 and 6).

If the given points form an acute-angled or obtasgled triangle, the isosurfaces of small
values of spatial error will change according tgufes 7 and 8 (compare to Fig. 2 and 3). With

increasing error values, differences in isosurfea@ssmaller, they converge into spherical surface
again.
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Figure 1: Optimum configuration of spatial distafmtersection.



5 Conclusion

The procedure used, combining a model solution géa@detic task and potential of the Matlab
software, has shown to be very appropriate forgmesind visualization of isosurfaces of constant
spatial error of a point to be identified.
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Figure 2: Isosurface farpg = 5.5 mm, given points form an equilateral triamg|
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Figure 4: Isosurface farpg = 8.0 mm, given points form an equilate

triangle.
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Figure 5: Section through isosurfacestfgg 5.3 mm, 6.0 mm, 7.0 mm,
given points form an equilaterangle.
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Isosurface faregr = 15.0 mm, given points form an equilateral trieng

Figure 6:
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Figure 7: Given points form an obtuse-angled gianvalues of mean spatial error:

a)Mpr = 7.0 mm, b)meg = 8.0 mm.
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Figure 8: Acute-angled triangle, valu

of mean spatial error:

a) mpr=5.5mm,

b) mpr=6.0 mm,

Cc) mMpr=7.0 mm.
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