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Abstract 

The paper is devoted to the parameter identification of the axial dispersion model in 
the closed–open canal. It is oriented to the identification precision for the two 
variants of the flow model with various variance levels. The identification method is 
based on the transfer function application for the solution of given model PDE. When 
the impulse function g(t) is obtained, the characteristics of this function are obtained 
analytically as functions of the model parameters. The impulse function was used for 
the generation of artificial response with the additive Gaussian noise of various 
dispersions. Then the parameter identification was computed from experimental 
data. The theory enables to estimate the model parameters via moment method. Then 
the non-linear regression by the least square method was used. The point parameter 
estimate was obtained in the sense of the maximum likelihood method. The Hessian 
matrix was also calculated and then used for the standard deviation determination.  

1 Introduction 
Hydrodynamic models of flow structure inside apparatus, which corresponds with our ideas 

about the inner hydrodynamic situation, are sometimes used for the description of dynamical behavior 
of chemical–technological systems. The variety of models consists of perfectly mixed model, plug 
(piston) flow model, cascade of ideal mixers without or with recycling, axial and radial dispersion 
models, compartment models and their parallel and serial combinations, which are sometimes 
modified via bypassing, dead space (zone), recirculation etc. All the flow models in typical 
applications are parametric and described via linear operator. 

It is useful to notify the task of the mathematical operator synthesis consists of two parts for 
previous models in this context. It is necessary to select, discriminate and verify the flow structure 
first. The identification of operator parameters is the second step. 

The characteristic behavior of operators is described via basic flow dynamic equation in time, 
frequency or operator domain as the transfer function. The weight (impulse response) function g(t) is 
used as general characteristics of the hydrodynamic situation (flow structure), which can be 
statistically interpreted as a probability distribution function of the residence time of individual flow 
elements (particles) in the apparatus. The probability theory enables to characterize the function g(t) 
by statistical moments, mode, median etc. 

This paper is devoted to the second step of the operator determination – the methodology of 
parameter identification of flow structures. The methodology will be demonstrated on one type of 
axial dispersion model with two types of open–close boundary conditions. 

2 Axial dispersion model 
Let c = c(x, t) be concentration profile in given tube as a function of space coordinate and time. 

Let D, v, L be effective diffusivity, flow velocity and tube length. The axial dispersion model (for 
K = 1, c0 = 0) is described via partial differential equation  
 ( ) ( ) ( ) 0,0,,c,c,c >>−= xttxtxDtx xxxt ν  (1) 

with initial condition c(x, 0) = c0 = 0 for x ≥ 0 and two boundary conditions. They depend on the 
model choice:  

• Enforced input concentration or Danckwerts condition in the left closed part  
• Open condition the right open part. 



The first model has enforced input concentration u(t) in the tube input as c(0, t) = u(t) for t > 0.  
The right boundary is in infinity, so the boundary condition is c(+∞, t) = 0 for t > 0.  
The output signal is represented as the concentration in the tube output y(t) = c(L, t). 

Denoting mean residence time and Peclet criterion as T = L/v, Pe = v L/D and applying Laplace 
transform, we obtain the transfer function 
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in the sense of main value of complex square root. In the case of Dirac impulse response we have 
U(p) = K = 1 and the inverse Laplace transform comes to the resulting formula 
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for θ  = t/T> 0. Anyway g(θ,Pe) = 0. 

The generalization of previous model can have the form 
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where Td, K, c0 are dead time, gain factor and steady state concentration. The vector of model 
parameters can be denoted as a = (K, Pe, T, Td, c0) with default values Td = c0 = 0. Thus the first model 
of axial dispersion has three, four or five free parameters. 

The second model differs only in the left boundary condition, which is designed according to 
Danckwerts as  
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for t > 0. 

The adequate transfer function of the second model is 
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After the inverse Laplace transform we have alternative impulse response 
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as a kernel of the second model with three, four or five free parameters. 

3 Moments and parameter estimation 
Let y(t) be impulse response of previous models for c0 = 0. We define absolute moments as  
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is an integral over infinite domain. Central moments are then defined as 
 ( ) ( ) 01 /dy Mttmt k
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The moments m1, μ2 represents mean value and dispersion of impulse response in physical units. Well 
known dimensionless skew and kurtosis are defined as  
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The moments can be estimated from experimental data using numerical integration over finite time 
domain. The trapezoidal rule was used to evaluate all the previous integrals.  

The second way of moment evaluation is based on the model analysis. The first model has the 
moment characteristics: 
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The second model has a little bit complex moment characteristics: 
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The parameter estimation via moment method is an inverse task which is based on the enforced model. 
It consists of several steps which are here discussed on the example of the first model: 

• Estimation of c0 from the last measured concentration or setting c0 = 0. 
• Substraction of c0 from measured concentrations y. 
• Evaluation of m1, μ2, skew from measured concentrations by trapezoidal method. 
• Estimation of Pe = 2m1

2/μ2, Τ = m1 in the case when Td = 0. 
• Estimation of Pe = 2(3/skew)2, T = 3μ2

1/2/skew, Td = m1 – T when Td was unknown. 
• Estimation of dimensionless maximum time θmax = (1 + 9/Pe2)1/2 – 3/Pe which is the mode 

(maximum concentration) coordinate.  
• Gain estimation as K = ymax/ g(θmax,Pe) from maximum response concentration ymax. 

This estimate can be used as initial point for nonlinear regression task. 

In the special case of three parameter model with Td = c0 = 0 we can correct the original parameters as: 
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4 Nonlinear regression 
Let a = (K, Pe, T, Td, c0) be vector of parameters. Let (tk,yk) be experimental response for  

k = 1, ... , m. The objective function for nonlinear regression is then well known sum of squares 
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Let SSQ reaches its minimum value SSQopt in point aopt. Let H = ∂2SSQ(aopt)/∂a2 be positive definite 
Hessian matrix in the maximum likelihood estimate. Now we can estimate the model error  
se = (SSQopt/(m – n))1/2  and one-standard deviation of parameters as vector 
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Here m is the number of experimental data and n is the number of estimated parameters. In our case 
we have n = 3, 4, 5, depending on the additional conditions c0 = 0, Td = 0. The last question is how to 
minimize the function SSQ in the neighborhood of moment estimate.  

5 Optimization 
Three aspects are necessary for the reliable optimization for non-convex functions: 

• The suitable domain of optimization, where the solution is expected 
• The sophisticated initial estimate of searched parameters 
• The effective method of convex optimization 

In this specific case, the moment estimates were used as the initial parameter values. The 
optimization domain was created by 90 % decreasing, respectively increasing of the initial nominal 
values. The Predictioned conjugate gradient method [2] was used for the task solution, because it is the 
recommended standard for the problems of this specific type. The Matlab realization of this method is 
well-known as fmincon function which attempts to find a constrained minimum of a scalar function 
of several variables starting at an initial estimate. One of the possible types of the function application 
is: 

x = fmincon(fun,x0,A,b,Aeq,beq,lb,ub) 

where x is optimum parameter vector, fun is the name of the objective function, x0 is the initial 
estimate vector, lb and ub are the lower, respectively upper bound on the optimization domain. The 
remaining parameters A, b, Aeq, beq represent the other linear constrains and there are empty 
in this specific task. 

6 Results 
The two upper described models served as generators of initial data in given time samples for 

K = 100, Pe = 10 and T = 10. The remaining parameters (Td, c0) were set to zero and were not the 
optimization subjects. The additive Gaussian noise of the various one-standard deviations was put on 
the obtained theoretical data to form the artificial experimental data. The noise level σ was defined 
relatively to the maximum signal intensity (in the mode) in the range form 0.1 to 5 %. 

The moment estimates were obtained from the artificial experimental data according to Eqs (14) 
and (15). These estimates were consequently used as the starting optimization values. The results of 
the optimization there are both the maximum likelihood estimates x, and their standard deviations – 
see Eq (18) – plus the model standard deviation se. 

The identification results are presented in Table 1 for the simple axial model and Table 2 for the 
axial model with Danckwerts condition. The LSQ is the minimum of SSQ and SD is the individual 
value of parameter standard deviation in the tables. The individual SD’s are the components of the 
vector s – see Eq (18). 

The tables demonstrate the noise level influence to the accuracy of moment and maximum 
likelihood estimates. 



There are some general dependences in the tables: 
• Increasing of the noise level decreases the estimation accuracy 
• The moment estimates are less accurate then the maximum likelihood ones 
• The difference between these two estimates rapidly increases with the noise level σ 
• The moment estimates are suitable as initial values for the optimization only in the given 

σ range 
 
 

Table 1: Simple axial model 

noise level σ [%] parameter estimate 
0.100 0.200 0.500 1.000 2.000 5.000

K theoretic 100.000 100.000 100.000 100.000 100.000 100.000
 moment 98.725 100.467 101.880 102.538 110.087 123.072
 LSQ 100.027 100.019 99.794 100.565 99.113 101.548
 SD 0.039 0.077 0.168 0.248 0.619 1.251
Pe theoretic 10.000 10.000 10.000 10.000 10.000 10.000
 moment 10.126 9.472 9.076 9.008 6.083 5.110
 LSQ 9.998 9.989 10.095 9.924 9.696 9.964
 SD 0.011 0.021 0.047 0.068 0.170 0.340
T [s] theoretic 20.000 20.000 20.000 20.000 20.000 20.000
 moment 19.972 20.087 20.046 20.343 21.162 21.272
 LSQ 20.002 20.010 9.970 20.098 20.123 20.184
 SD 0.006 0.012 0.026 0.039 0.100 0.191

 

 

Table 2: Axial model with Danckwerts condition 

noise level σ [%] parameter estimate 
0.100 0.200 0.500 1.000 2.000 5.000

K theoretic 100.000 100.000 100.000 100.000 100.000 100.000
 moment 82.315 82.087 81.780 87.717 94.903 110.680
 LSQ 100.056 100.001 99.676 99.640 99.440 97.541
 SD 0.034 0.055 0.155 0.363 0.681 1.426
Pe theoretic 10.000 10.000 10.000 10.000 10.000 10.000
 moment 11.153 11.150 11.160 10.479 9.776 8.390
 LSQ 9.994 10.008 10.043 10.068 9.900 10.037
 SD 0.009 0.015 0.0417 0.098 0.183 0.400
T [s] theoretic 20.000 20.000 20.000 20.000 20.000 20.000
 moment 28.024 28.015 28.0291 28.0888 28.337 28.451
 LSQ 19.966 20.008 20.029 20.030 20.050 19.851
 SD 0.005 0.009 0.025 0.060 0.113 0.234

 



 

  
Figure 1 Simulated response of 1st model 

(σ = 5 %) 
Figure 2 Simulated response of 2nd model 

(σ = 5 %) 

  
Figure 3 Geometry of SSQ function for  

1st model and optimum K 
Figure 4 Geometry of SSQ function for  

2nd model and optimum K 

  
Figure 5 Identification result of 1st model Figure 6 Identification result of 2nd model 

The most illustrative situation occurs for the 5 % noise level. The initial theoretical impulse 
responses for the both models are depicted in the Fig 1 and Fig 2 as lines. The artificial experimental 
data are presented in the same figures as circles. These two figures also demonstrate that the 
Danckwerts condition decreases the kurtosis. 

The geometry of SSQ function in the optimum neighborhood is depicted in the Fig 3 and Fig 4. 
The full circles represent the moment estimates (the initial values for optimization), the empty circles 
are the optimum points and the lines represent the contours of SSQ function in 2-D cut. 

The final results of maximum likelihood identification are depicted in the Fig 5 and Fig 6 where 
the lines correspond to the results of identification and the circles have the same meaning as in Fig 1 
and Fig 2. 

Both the identification methodology and its Matlab realization are suitable for the parameter 
estimation of axial dispersion models in the case of small noise levels. The procedure will be used 
both for the more complicated models identification and the real systems investigation in the future. 
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