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D.Černá, V. Finěk
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Abstract

The paper is concerned with a numerical simulation of Burgers flow as a sim-
plified model of unsteady flow of a compressible viscous fluid. Viscous Burgers
equation represents many of the properties of unsteady compressible Navier-
Stokes equations, such as nonlinear convection and viscous diffusion leading to
shock waves and boundary layers. A one-dimensional Burgers equation is fre-
quently used to test new methods because an analytic solutions are known for
different boundary and initial conditions.

We follow some ideas from [1, 3, 5], where a general wavelet adaptive method
for a large class of nonlinear equations has been proposed and we solve Burgers
equation by a wavelet adaptive method. The adaptivity in the context of wavelet
discretization insists in establishing which wavelet coefficients to keep and which
to discard. The specific difficulty is that the singularities might move in time
and so the set of indices of significant wavelet coefficients at each time step
should be updated. The computational complexity for all steps of our algorithm
is controlled. The computation is carried out in MATLAB using a PDE Toolbox
and Wavelet Toolbox.

1 Motivation - compression property of wavelets

Let us approximate the function f by a combination

fN =
∑

(j,k)∈JN

cj,kψj,k,

where #JN = N and ψj,k are suitable wavelets. A function f that is smooth, except at some
isolated singularities, typically has a sparse representation in a wavelet basis, i.e. only a small
number of numerically significant coefficients carry most of the information on f . Figure 1
displays a function f sampled on 29 points and its reconstruction from 50 largest wavelet coeffi-
cients. Wavelets used for decomposition are Daubechies wavelets with two vanishing moments.
The largest coefficients are also displayed in Figure 1, the x-axis represents the center of the
support of wavelet corresponding to given coefficient and y-axis represents the level of resolution
(j). The function f has sharp derivative at the point x = 0.5 and so we can observe that the ap-
proximation is automatically refined near this point. This compression property of wavelets has
many applications. Most important are data compression, signal analysis, and efficient adaptive
schemes for PDE’s.

Figure 1:
function f 50 significant coefficients approximation fN of f



2 Viscous Burgers equation

Let Ω = 〈a, b〉 be a bounded interval, T > 0 and QT := Ω× (0, T ). We consider viscous Burgers
equation with homogeneous Dirichlet boundary conditions: Find u : QT → R such that

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
in QT (1)

with initial and boundary conditions

u (x, 0) = u0 (x) for x ∈ Ω and u (a, t) = u (b, t) = 0 for t ∈ (0, T ). (2)

We assume that ν > 0, u0 ∈ L2 (Ω). We also consider Burgers equation with periodic boundary
conditions.

Burgers equation is derived from the Navier-Stokes equation in the case of a one-dimensio-
nal non-stationary flow of a compressible viscous fluid and it models a flow through a shock wave.
This equation is frequently used to test new methods because an analytic solutions are known
for different boundary and initial conditions and because for small values of ν solutions typically
develop very sharp gradients which are difficult to reproduce with numerical methods.

Weak solution of viscous Burgers equation is defined as a function u satisfying:

1) u ∈ L2
(
0, T ;H1

0 (Ω)
)
, u ∈ L∞ (QT ) ,

2)
d
dt
〈u (t) , v〉+

∫

Ω
u

∂u

∂x
vdx + ν

∫

Ω

∂u

∂x

∂v

∂x
dx = 0 for all v ∈ H1

0 (Ω) ,

3) u (0) = u0 in Ω.

The symbol 〈·, ·〉 denotes standard L2 (Ω) product. H1
0 (Ω) denotes the subspace of all

functions from H1 (Ω) with zero traces on ∂Ω, H−1
0 (Ω) denotes its dual. It is known that there

exists a unique weak solution and it satisfies
∂u

∂t
∈ L2 (QT ). Periodic boundary conditions are

treated in a similar way.

3 Discretization

Let h > 0, tk := kh and uk be an approximation of u (·, tk). We use following explicit methods
for discretization in time:

Forward Euler method (FE)

uk+1 − uk

h
+ uk ∂uk

∂x
= ν

∂2uk

∂x2
(3)

Adams-Bashforth method (AB)

uk+1 − uk

h
+

3
2
uk ∂uk

∂x
− 1

2
uk−1 ∂uk−1

∂x
=

3
2
ν

∂2uk

∂x2
− 1

2
ν

∂2uk−1

∂x2
(4)

Euler-Adams-Bashforth method (EAB)

uk+1 − uk

h
+

3
2
uk ∂uk

∂x
− 1

2
uk−1 ∂uk−1

∂x
= ν

∂2uk

∂x2
(5)



While forward Euler method is first order accurate with respect to the time-step h, Adams-
Bashforth method is second order accurate. The error for Euler-Adams-Bashforth method is
almost the same as the error for Adams-Bashforth method, see Example 1. and Example 2.
below. Since AB and EAB are two-step methods, they are slightly slower than FE. It is known
these explicit schemes are not unconditionally stable, i.e. stability depends on the size of time
step and number of basis functions used for spatial discretization. Time steps giving stability
for different time discretizations are shown in Table 1.

We use Petrov-Galerkin method for discretization in space. Basis and test functions will
be wavelets adapted to the interval and boundary conditions. In this case the problem reads:

Find uk+1
n ∈ V k+1

n such that ak

(
uk+1

n , v
)

= fk (v) , for all v ∈ Ṽ k+1
n , (6)

where V k
n , Ṽ k

n ⊂ H1
0 (Ω), dimV k

n = dimṼ k
n < +∞, V k

n ⊂ V k
n+1, Ṽ k

n ⊂ Ṽ k
n+1 and

⋃
n∈N V k

n =⋃
n∈N Ṽ k

n = H1
0 (Ω) . A continuous bilinear form ak : H1

0 (Ω) × H1
0 (Ω) → R and fk ∈ H−1

0 (Ω)
are defined by the standard way.

Let {ψλ, λ ∈ J} be a basis of V k
n ,

{
ψ̃λ, λ ∈ J

}
be a basis of Ṽ k

n (for the sake of simplicity

we omit indexes k and n). Let dk
λ be such that uk+1

n =
∑

λ∈J dk+1
λ ψλ. Then algebraic formulation

of our problem reads:

Mkdk+1 = fk,

where Mk
i,j = ak(ψi, ψ̃j), fki =

〈
fk, ψ̃i

〉
and dk+1

i = dk+1
i . In the sequel we assume that

{ψλ, λ ∈ J} and
{

ψ̃λ, λ ∈ J
}

are biorthogonal wavelet bases.

Definition 1. Family Ψ := {ψλ, λ = (j, k) ∈ J} for infinite set J = Jφ∪Jψ, #Jφ < ∞, is called
wavelet basis of V ⊂ Hs (Ω), if

1) Ψ is a Riesz basis of V , that means Ψ generates V and there exist constants c, C ∈ (0,∞)
such that for all b := {bλ}λ∈J ∈ l2 (J), where |λ| := j for λ := (j, k) holds

c ‖b‖l2(J) ≤
∥∥∥∥∥
∑

λ∈J

bλ2−s|λ|ψλ

∥∥∥∥∥
Hs(Ω)

≤ C ‖b‖l2(J) .

2) Functions are local in the sense that diam (Ωλ) ≤ C2−|λ| for all λ ∈ J , where Ωλ is support
of ψλ.

3) Functions have cancellation properties of order m, i.e.

|〈v, ψλ〉| ≤ C2−m|λ| |v|Hm(Ωλ) , λ ∈ Jψ, v ∈ V.

There exists a biorthogonal wavelet basis Ψ̃ to any wavelet basis Ψ, that means a basis
satisfying i), ii) and cancellation property iii) of order m̃. Any function v ∈ V can be written
in the form v =

∑
λ∈J dλψλ, where dλ =

〈
v, ψ̃λ

〉
.

We use B-spline wavelet basis, i.e. wavelet basis derived from B-spline wavelet designed
in [2], which were adapted to the interval by periodization [7] (well-suited only for periodic
problems) or treating boundary wavelets separately [6]. 1D wavelet basis constructed from
quadratic B-spline adapted to homogeneous Dirichlet boundary condition is displayed in Figure
2 and Figure 3. Wavelet basis can be transformed to so called scaling basis by discrete wavelet
transform (DWT) in O(N) operations, where N is the number of basis functions. Riesz basis



property ensures stability of DWT. Scaling basis corresponds to nodal basis on uniform mesh
while wavelet basis corresponds to hierarchical basis in the finite element theory and are used in
the adaptive scheme. In all examples FE is combined with linear basis functions and AB, EAB
are used with quadratic basis functions.

Figure 2: Scaling functions at the level 4

Figure 3: Wavelet functions at the level 4 and 5

Let us define approximation of function uk+1 by:

uk+1
n =

∑

λ∈Jn

dk+1
λ ψλ, (7)

where #Jn = n and Jn contains indices of n largest values ‖dλψλ‖. This approximation is near
optimal in the sense:

∥∥∥uk+1 − uk+1
n

∥∥∥
Hp(Ω)

≤ C infv∈Sn

∥∥∥uk+1 − v
∥∥∥

Hp(Ω)
, 0 ≤ p ≤ s, (8)

where Sn = span {ψλ, λ ∈ Λ, #Λ ≤ n} . And for
1
q

=
1
p

+
t

d
it holds:

uk+1 ∈ W s+t,q ⇒ infv∈Sn

∥∥∥uk+1 − v
∥∥∥

W s,p
≤ CN−t/d. (9)

Now our aim is to design a scheme that in the above tracks sense the significant coefficients
of uk+1.



4 Adaptive numerical scheme

The algorithm has the following form

1) Initialization Compute wavelet coefficients
{
d0

λ, λ ∈ J0
}

of u0 given by initial condition.

2) Iteration We have index set Jk and wavelet coefficients dk
λ, λ ∈ Jk, of uk. Then we

compute Jk+1 and wavelet coefficients of uk+1 in these steps:

i) Refinement: A set J̃k+1 ⊃ Jk is derived from aposteriori analysis of wavelet coeffi-
cients.

ii) Solution: By adaptive approximation of operators fk, Mk we find solution of Mkdk+1 =
fk for dk+1 =

{
dk+1

λ , λ ∈ J̃k+1
}

.

iii) Coarsening: consists in thresholding wavelet coefficients dk+1
λ . Index set Jk+1 ⊂ J̃k+1

corresponds to the largest coefficients. We can perform the coarsening only in every
l-th step or we need not perform coarsening at all in the case that the singularity
doesn‘t move.

5 Refinement strategies

At the k-th step we have a set of indices Jk. In order to track singularities we also keep the
adjacent coefficients and if 2dmη|λ| ≤ |dλ| ≤ 2d(m+1)η|λ| then we refine m levels above λ. Level
dependent threshold η|λ| must be set appropriately to control the error of approximation. In
our case we use η|λ| = 2d|λ|η because this approach is appropriate for controlling the error in H1

norm. On Figure 4 the set Jk is represented by blue points and the brown points are adjacent.

In the case of a traveling wave, see Example 2, the steep front can move too fast to be
tracked with the scheme above. For this reason we further improve our strategy: We compare
the largest wavelet coefficients on the same level of the last two index sets Jk and Jk−1 and this
gives us an information about the speed of the wave. For example, if the speed is two points to
the right, we further refine two points to the right at every level, see the yellow points on Figure
4. And thus we obtain the new index set J̃k+1.

Figure 4:
The set Jk and the adjacent points The set J̃k+1



6 Numerical examples

Example 1. First we consider the solution with steep front on a stationary wave. Let us
consider equation (1) for Ω = (0, 1) with periodic boundary conditions

u (0, t) = u (1, t) , t ∈ (0, T ) (10)

and initial condition
u (x, 0) = sin (2πx) , x ∈ (0, 1) . (11)

Analytic solution of this task is given by

u(x, t) =

∫∞
−∞

x−ξ
t exp

[
− (x−ξ)2

4νt

]
exp

[
cos(2πξ)

4πν

]
dξ

∫∞
−∞ exp

[
− (x−ξ)2

4νt

]
exp

[
cos(2πξ)

4πν

]
dξ

.

This function develops a steep gradient at x = 0.5, which reaches a maximum of approximately
40.1 at t = 0.27. Accuracy results at t = 0.27 are given in Table 2. We can see that the
forward Euler method approximates the gradient very badly and that the H1 seminorm of the
error is too large. Adaptive wavelet schemes are much more efficient than non-adaptive schemes
with respect to number of degrees of freedom (dof) and computational work. Since the used
algorithms are not unconditionally stable, we summarize in Table 1. numerically found sizes
of the largest time-steps which ensure stability. Our aim was to obtain an idea of the stability
region rather than to determine it accurately.

Figure 5: Solution of 1D Burgers equation - stationary wave

Table 1: Stability results for ν = 0.01
Forward Euler Adams-Bashforth Euler-Adams-Bashforth

method method method
64 dof 64 dof 64 dof

∆t=0.002 ∆t=0.002 ∆t=0.004
128 dof 128 dof 128 dof

∆t=0.0008 ∆t=0.0005 ∆t=0.001
256 dof 256 dof 256 dof

∆t=0.0002 ∆t=0.0001 ∆t=0.0002



Table 2: Accuracy results of Burgers equation with conditions (10), (11), ν = 0.01,
and t = 0.27
method ∆t basis dof uniform L∞ norm L2 norm H1 seminorm gradient

functions or adapt. of error of error of error at
or adapt. ×10−4 ×10−4 ×10−4 x = 0.5

FE 5 10−4 linear 128 uniform 91 12 6355 38.6
FE 10−4 linear 256 uniform 32 6 3183 39.8
AB 5 10−4 quadratic 128 uniform 84 12 916 40.6
AB 10−4 quadratic 256 uniform 39 6 484 40.2

EAB 5 10−4 quadratic 128 uniform 83 12 912 40.6
EAB 10−4 quadratic 256 uniform 39 6 483 40.2
FE 10−4 linear 42 adaptive 35 10 3354 39.7
AB 10−4 quadratic 40 adaptive 43 10 499 40.2

EAB 10−4 quadratic 40 adaptive 42 10 498 40.2

Example 2. We have a situation of fast moving wave which develops a steep front. Let us
consider equation (1) with homogeneous Dirichlet boundary conditions

u (0, t) = u (1, t) = 0 (12)

and initial condition
u (x, 0) =

x

1 + [exp (1/8ν)]−1/2 exp (x2/4ν)
. (13)

Analytic solution of this task is known and numerical results are presented in Table 2. Wavelet
bases derived from B-splines were constructed as in [6].

Figure 6: Solution of 1D Burgers equation - traveling wave

Table 3: Accuracy results of Burgers equation with conditions (12), (13) and
ν = 0.001, and t = 0.7

method ∆t basis dof uniform L∞ norm L2 norm H1 seminorm
functions or adapt. error ×10−4 error ×10−4 error ×10−4

FE 10−4 linear 255 uniform 9 3 169
AB 10−4 quadratic 252 uniform 4 1 38

EAB 10−4 quadratic 252 uniform 4 1 39
FE 10−4 linear 47 to 50 adaptive 10 4 170
AB 10−4 quadratic 43 to 48 adaptive 5 1 40

EAB 10−4 quadratic 43 to 48 adaptive 5 1 41
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