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Abstract

The 3D image of human head obtained by T2 magnetic resonance imaging (MRI)
can be represented by three-dimensional matrix of voxel intensities. There is
a chance to use eight neighbor voxels for the 3D interpolation. The trivial lin-
ear interpolation can be realized as mean of eight. The main disadvantage of
linear filtering is a sensitivity to impulse noise. There is a chance to build a set
of non-linear filters using ÃLukasiewicz algebra with square root (ÃLAsqrt). They
can be both insensitive to impulse noise and similar to linear filters in the case
of Gaussian noise. The ÃLAsqrt is a good tool for realization of several trimmed
averages, median, quasimedians, L-estimates with dyadic weights, Walsh list,
Hodges-Lehmann median and the other useful procedures for non-linear pro-
cessing. The amazing properties of Hodges-Lehmann are demonstrated on HL4

function. The non-linear functions are used for direct and hierarchical fuzzy de-
noising. The software for the 3D non-linear denoising of MRI signal was built in
the Matlab environment. The filter properties were also studied and compared.
Both the statistical analysis of robust filters and the application of them to real
biomedical data come to the filters with Walsh list inside. They are robust to
impulse noise and similar to the ”average of eight” filter.

1 Primer of ÃLAsqrt

The mathematical background of 3D image processing is ÃLukasiewicz algebra enriched by a square
root function (ÃLAsqrt) which is defined as

ÃLAsqrt = {L,∧,∨,⊗,→, sqrt, 0, 1}

where L = [0, 1] ⊂ R, conjunction (∧), disjunction (∨), ÃLukasiewicz multiplication (⊗) and
residuum (→) are basic operations and sqrt is the square root function (Tab. 1). It is useful
to introduce several derived operators, e.g. negation, equivalence, non-equivalence, addition or
subtraction. We can describe the basic and derived operators as basic functions (Tab. 1).

The fuzzy logic expression (FLE) is defined by the rules:

• Any free variable x ∈ L is FLE.

• Any constant a ∈ L is FLE.

• ψi(FLE) is FLE for i = 1, 2,

• ψj(FLE, FLE) is FLE for j = 3, . . . , 10,

• ψk(FLE, n) is FLE for k = 11, 12 and n ∈ N0,

where ψm (m = 1, . . . , 12) are the basic functions in ÃLAsqrt.

Let n ∈ N, ~x ∈ Ln and ϕ : Ln → L. If ϕ(~x) is FLE then ϕ is called a fuzzy logic function
(FLF) in ÃLAsqrt. The main advantage of ÃLAsqrt is a constrain sensitivity of any FLF to its input
variables as proven in [3].



function formula
negation ψ1(x) = ¬x = 1− x

square root ψ2(x) = sqrt(x) = (1 + x)/2
conjunction ψ3(x, y) = x ∧ y = min(x, y)
disjunction ψ4(x, y) = x ∨ y = max(x, y)
ÃLukasiewicz ψ5(x, y) = x⊗ y = max(x + y − 1, 0)
multiplication
residuum ψ6(x, y) = x → y = min(1− x + y, 1)
equivalence ψ7(x, y) = x ↔ y = 1− |x− y|
non-equivalence ψ8(x, y) = x ◦ y = |x− y|
addition ψ9(x, y) = x⊕ y = min(x + y, 1)
subtraction ψ10(x, y) = xª y = max(x− y, 0)
multiplication ψ11(x, n) = n¯ x = min(n · x, 1)
by integer
integer power ψ12(x, n) = xn = max(n · x− n + 1, 0)

Table 1: Basic functions in ÃLAsqrt for x, y ∈ L, n ∈ N0

2 Useful FLFs for 3D Image Denoising

Let S = (x1, . . . , xn) be a list of values xk ∈ [0, 1]. Let O = (x(1), . . . , x(n)) be an ordered list of
values from S. Let y ∈ [0, 1] be the output of 3D denoising filter. Then the FLF denoising filter
is based on the formula

y = f(x1, . . . , xn)

where f : [0, 1]n → [0, 1] is a FLF.

It is useful to define Walsh list as n(n + 1)/2-tuple of FLF

Wn : Ln → Ln(n+1)/2

where
~Wn(~x) =

(
xi + xj

2

∣∣∣ 1 ≤ i ≤ j ≤ n

)
.

Let p = bn+1
2 c, q = dn+1

2 e, r = bn
4 c, s = n−k

2 and t = n−k−1
2 . Thus there are several FLFs

which can be used for the FLF denoising:

AVGn,k(~x) =
1
k
·

k∑

j=1

x(s+j) for k = 2N ,

MEDn,k(~x) =
1
2
·
(
x(p−k) + x(q+k)

)
for k < p,

BINn,k(~x) =
1
2k
·

k∑

j=0

(
k

j

)
· x(t+j) for t ∈ N,

BESn(~x) =
1
2
· (MEDn,0(~x) + MEDn,r(~x)) ,

HLn(~x) = MEDn(n+1)/2,0( ~Wn(~x)),

WBESn(~x) = BESn(n+1)/2( ~Wn(~x)).

They are realizable in ÃLAsqrt because of (see [3])

• any x(k) is FLF of ~x ∈ Ln,



• any weighted sum
∑n

k=1 wkxk is FLF of ~x ∈ Ln just when
∑n

k=1 wk ≤ 1 and wk is non-
negative dyadic number (wk = mk/2N ).

There are two extreme approaches to FLF denoising: average making and median making.
They are represented by AVGn,n and MEDn,0 functions. The arithmetic mean is too sensitive
to impulse noise while the median is robust in this case. But the argumentation against median
is based on its inadequate response to Gaussian noise. That is why the compromise processing
plays the important role in applications. The Walsh list is an efficient tool for the compromise
making.

Example: Let n = 4 and ~x = (x1, x2, x3, x4). Then there are only four different FLF
filters: AVG4,4, MED4,0, BIN4,3 and HL4. In the trivial case x1 = x2 = x3 = x4 = ξ, we
have AVG4,4(~x) = MED4,0(~x) = BIN4,3(~x) = HL4(~x) = ξ. Otherwise, the vector ~x ∈ L4 can
be normalized and permuted to the form ~x = (a, b, 0, 1) where a, b ∈ L. Then x(1) = 0, x(2) =
min(a, b), x(3) = max(a, b), x(4) = 1 and finally AVG4,4(~x) = (a+b+1)/4, MED4,0(~x) = (a+b)/2,
BIN4,3(~x) = (3a + 3b + 1)/8, ~W4(~x) = (a, (a + b)/2, a/2, (a + 1)/2, b, b/2, (b + 1)/2, 0, 1/2, 1),
HL4(~x) = MED10,0( ~W4(~x)). It is easy to demonstrate that the values BIN4,3(~x) and HL4(~x) are
between AVG4,4(~x) and MED4,0(~x).

The contour plot of AVG4,4(a, b, 0, 1) is depicted in the Fig. 2 for the contour distance
∆FLF = 0.01. The contour plots of MED4,0(a, b, 0, 1), BIN4,3(a, b, 0, 1) and HL4(a, b, 0, 1) are
depicted in the Figs. 3–5.

The BIN4,3(~x) is a trivial compromise between mean and median because of BIN4,3(~x) =
(AVG4,4(~x) + MED4,0(~x))/2. The Hodges-Lehmann median (see [2]) HL4(a, b, 0, 1) offers the
same value as AVG4,4(a, b, 0, 1) for min(a, b) ≤ 1/2 ≤ max(a, b). The value HL4(a, a, 0, 1) = a
is equal to the median MED4,0(a, a, 0, 1) = a. Then the HL4(~x) function based on Walsh list
~W4(~x) is robust to impulse noise as median but near to the mean for the symmetric values which
is useful for image denoising.

3 Direct FLF Denoising

Let the values x1, . . . , x8 are obtained from the 2× 2× 2 cube of eight neighbor voxels from the
original 3D image. The direct FLF denoising is a process of the ”body centered” interpolation
which is not necessary linear one. We can use any FLF and apply it to the original corner values
x1, . . . , x8.

The functions AVG8,8, AVG8,4, BES8, MED8,0, MED8,1, HL8, WBES8, BIN8,3, BIN8,5,
BIN8,7 were used for the direct FLF denoising.

4 Hierarchical FLF Denoising

The 23 cube of eight voxels can be decomposed in three directions to the three pairs of 22

squares. Then the six lists of size four are formed

S1 = (x1, x2, x3, x4)
S2 = (x5, x6, x7, x8)
S3 = (x1, x2, x5, x6)
S4 = (x3, x4, x7, x8)
S5 = (x1, x3, x5, x7)
S6 = (x2, x4, x6, x8)

The first step of hierarchical FLF processing is based on the ”face centered” interpolation using
any FLF. The functions MED4,0, HL4 were used here to produce hk = f(Sk) for k = 1, . . . , 6.



The second and last step is based on the denoising by the six points interpolation using the
another FLF. The functions AVG6,4, MED6,0 and HL6 were used to obtain y = f(h1, . . . , h6).

5 Filter Testing

A set of sixteen FLF 3D filters was tested using the impulse and Gaussian noise. The impulse
noise was represented by a list where x1 = 1 and xk = 0 for k = 2, . . . , 8. The Gaussian noise
was studied in the case when xk ∼ N(0.5, 0.01) for k = 1, . . . , 8. Then the standard deviation
of Gaussian noise is σ = 0.1. The results are collected in the Tab. 2. Every filter is described by
a single FLF or by a pair of two FLFs. The output response to a single impulse noise is denoted
as yI and its ideal value is zero. The experimental values of standard deviation gain sG/σ are
also included in the Tab. 2 for the Gaussian noise and 104 samples.

Filter 1st level 2nd level yI sG/σ

F1 AVG8,8 * 0.1250 0.3554
F2 AVG8,4 * 0.0000 0.3858
F3 BES8 * 0.0000 0.3688
F4 MED8,0 * 0.0000 0.4102
F5 MED8,1 * 0.0000 0.3887
F6 HL8 * 0.0000 0.3670
F7 WBES8 * 0.0000 0.3603
F8 BIN8,3 * 0.0000 0.3947
F9 BIN8,5 * 0.0000 0.3853
F10 BIN8,7 * 0.0078 0.3781
F11 MED4,0 AVG6,4 0.0000 0.3806
F12 MED4,0 MED6,0 0.0000 0.3863
F13 MED4,0 HL6 0.0000 0.3794
F14 HL4 AVG6,4 0.0000 0.3663
F15 HL4 MED6,0 0.0000 0.3703
F16 HL4 HL6 0.0000 0.3648

Table 2: FLF filter properties

There are only two filters (F1, F10) which are sensitive to the impulse noise. The other
filters are robust ones. The F1 filter is just linear one with the smallest possible gain sG/σ =
0.3554 of Gaussian noise. The best non-linear filter with minimum noise gain sG/σ = 0.3603
is F7 which is represented by WBES8 FLF. The top five robust filters with zero sensitivity
to impulse noise are F7, F16, F14, F6, F3 with sG/σ ≤ 0.37. The time complexity of FLF
filtering is driven by the time complexity of sorting the lists. Supposing the time complexity
T(n) ≈ n(n − 1)/2 of n-element sorting, we obtain the time complexities of the top five filters
proportional to 630, 480, 285, 630 and 28.

6 Biomedical Application

The set of FLF filters were applied to 3D MRI T2 image and the results were compared. There
is no possibility to compare the resulting 3D images with the ideal 3D image because of it is
unknown. That is why the 3D images were compared each to other using euclidean distance

d : [0; 1]m×n×p × [0; 1]m×n×p → R+
0

in the space [0; 1]m×n×p, where m,n, p ∈ N are 3D image dimensions. The distance is defined
as

d(A,B) =

√√√√
m∑

i=1

n∑

j=1

p∑

k=1

(aijk − bijk)2



and the mutual distances
di,j = d(Fi(X),Fj(X))

forms the matrix
D = {di,j}N

i,j=1

where N ∈ N is a member of filters, X ∈ [0; 1]m×n×p is the original 3D image and Fi(X) ∈
[0; 1]m×n×p is the result of ith FLF filter. Using a distance threshold value θ > 0, we can study
similar FLF filters satisfying 0 < di,j ≤ θ in the biomedical context. The graph theory enables
to show the relationships using undirected graph with FLF filters as vertices and with edges as
symbols of filter similarity. The adjacency matrix is then defined as

A = {aij}N
i,j=1

where aij = (di,j > 0) ∧ (di,j ≤ θ). Applying the methodology to the original 3D image X
(Fig. 6), the sixteen FLF filters (Tab. 2) and the distance threshold θ = 7.5, we have N = 16
together with the matrices D,A. The resulting undirected graph has five components (Fig. 1).
The first component consists of eight filters (vertices): F2, F4, F8–F13 which are similar to the
median filter F4 (MED8,0). There is a maximum clique of size five inside the first component:
F2, F8, F9, F10, F12. The second component consists of five filters: F6, F7, F14, F15, F16 which
use Walsh list as a background of FLF processing. There is a unique maximum clique of size
three inside the second component: F7, F14, F16. The remaining three components consist of
single isolated filters: F1, F3, F5. The cluster analysis of previous results was also based on the
analysis of the distance matrix D. Splitting the filters into two clusters we obtain two classes:
F1, F3, F6, F7, F13–F16 and F2, F4, F5, F8–F12. The first class includes the arithmetic mean
AVG8,8, BES8 and the filters with Walsh list inside. The second class consists of the remaining
filters which are similar to the median MED8,0. Cluster analysis into three clusters forms a new
cluster: F5, F6, F15. The other clusters are: F1, F3, F7, F13, F14, F16 and F2, F4, F8–F12.
Cluster analysis into four clusters forms a new cluster: F3, F11, F13, F14. The other clusters are:
F1, F7, F16 then F2, F4, F8–F10, F12 and F5, F6, F15. Finally, the splitting into five clusters
produces ”mean” cluster: F1, F7, F16, ”median” cluster: F4, F8, F9, F12, ”trimmed” cluster:
F2, F10, ”BES” cluster: F3, F11, F13, F14 and ”Hodges-Lehmann” cluster: F5, F6, F15. Here,
the ”mean” cluster consists of top three filters with sG/σ ≤ 0.365. Thus the robust filters F7

(WBES8) and F16 (HL4 +HL6) are recommended as closed to F1 (AVG8,8) on the MRI 3D data.
But the ”median” cluster consists of filters with sG/σ ≥ 0.385 which are not recommended to
the robust filtering of MRI 3D signal.

7 Conclusions

A class of 16 non-linear 3D FLF filters was developed, analyzed and tested on artificial and
biomedical data. There are two representative subclasses of robust FLF filters which are either
similar to median or using Walsh list in the first level of FLF processing. The second subclass of
3D FLF filters is recommended for 3D MRI processing because of small gain of Gaussian noise.
This result was obtained on real biomedical data using graph theory and cluster analysis as two
analytical approaches.

From the biomedical point of view, the highest possible space resolution, the morphological
contrast and absence of artefacts are necessary for exact anatomical recognition of displayed
structures. The improved filtering of MRI signals is one of important factors within the process
of their transformation to the visual form. From that point of view, the result of non-linear 3D
denoising plays a role in medical praxis.
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Figure 1: Graph of 3D FLF class
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Figure 2: Contour plot of AVG4,4(a, b, 0, 1)
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Figure 3: Contour plot of MED4,0(a, b, 0, 1)
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Figure 4: Contour plot of BIN4,3(a, b, 0, 1)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

a

b

Figure 5: Contour plot of HL4(a, b, 0, 1)

Figure 6: Original image (slice 90)

Figure 7: Filter F1—AVG8,8 Figure 8: Filter F7—WBES8



Figure 9: Filter F16—HL4 before HL6 Figure 10: Filter F14—HL4 before AVG6,4

Figure 11: Filter F6—HL8 Figure 12: Filter F3—BES8
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