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INTRODUCTION 
 

Almost every real process exhibits nonlinear behavior in a full operating range. Local 
Model Networks are networks which are composed of locally accurate models, where output 
is interpolated by smooth locally active validity functions. This divide-and-conquer strategy is 
a general way of coping with complex systems. The architecture of LMN benefits from being 
able to incorporate a priori knowledge and conventional system identification methodology. 
The LMN structure also gives transparent and simple representation of the nonlinear system. 
Contrary to the black box representation of the nonlinear process by the neural networks, the 
conventional design methods can be utilized for nonlinear controller design. The idea of the 
LMN approach is to split the whole operating region into several sub-regions where in each 
region sub-region the process has close to linear behavior. For each region a local linear 
model is developed to approximate the non-linear dynamics. The global model of the process 
is a linear combination of the local models. In an initial off-line identification phase the local 
models and the validity function parameters have to be identified. Several methods can be 
used to obtain LMN parameters. The Expectation Maximization (McLachlan and Krishnan, 
1997) algorithm is usually used for the Gaussian process models although it requires a priori 
knowledge of complexity of the system or more precisely the number of local models. 
Another development is the local linear model tree LOLIMOT (Nelles, 1997). It is based on 
the idea to approximate a nonlinear map with piece-wise linear local models. The algorithm 
systematically bisects partitions of input space. Local models that do not fit sufficiently well 
are replaced by two or more smaller models in the expectation that they will fit the nonlinear 
target function better in their region of validity. Another training algorithm discussed in 
(Johansen and Foss, 1995) uses two loops for structure optimization and parameter estimation 
to iteratively increase the number of models and thus preventing from overparametrization. If 
linear local models are employed and the parameters of the validity function are fixed, the 
parameters of local models can be obtained using the standard least-squares method.  
 

LOCAL MODEL NETWORKS 
 

Local model network (LMN) is a generalization of the radial basis function network, in 
which individual neurons are replaced by local sub-models with basis functions defining the 
regions of validity of individual sub-models, according to the expected operating regions of 
the plant (Murray-Smith and Johansen, 1997).  

 
 



 
Figure 1 Local Model Network scheme 

 

Controllers are designed for each of the local models and the basis functions of the local 
model networks are used to interpolate between them to produce a nonlinear controller. The 
output of the system is given by  
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where ( )kψ   is a vector of scheduling variables,  jρ  is a basis function and ( )jy k)  is the 
output of the j-th model. The basis functions should form a partition of unity for the input 
space, i.e. at any point in the input space the sum of all basis function should equal 1. The 
network’s basis function are normalized to achieve the partition of unity, i.e. 
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where  is the general unnormalized basis function and normalized basis functions   sum 
to unity. Though normalization is often desirable, it also results in several side-effects, for 
example change of shape or loss of local support (Shorten and Murray-Smith, 1998).  

The blending of local models is calculated using the weighting functions. Gaussian 
basis functions are usually used for weighting the outputs of local models. The Gauss function 
for j-th model is given by  
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where parameters ,j jc σ  , define the Gaussian center and width, respectively and the 
scheduling variable ψ  can be a system state or any system variable. For one scheduling 
variable the weighting function is a typical bell-shaped curve.  

 

NONLINEAR MODELING USING SOMA ALGORITHM 
 

In attempt to accurately model the nonlinear system, a wide variety of techniques have 
been developed such as nonlinear autoregressive moving average with exogenous inputs 



(NARMAX) models (Chen and Billings, 1989), Hammerstein models (Billings and Fakhouri, 
1982) or Multiple Layer Perceptron (MLP) neural network (Narendra and Parthasarathy, 
1990). Even though, these methods offers improved accuracy over a single linear model, the 
black box representation of dynamics in these methods fails to exploit the theoretical results 
available in the conventional modeling and control domain. Besides MLP networks, Radial 
Basis Function (RBF) networks, which were initially introduced for multivariable 
interpolation, are other popular neural networks. The RBF network is a generalized version of 
LMN network where the output weights are substituted by the local models. 

The Self-Organizing Migrating Algorithm - SOMA (Zelinka, 2002) is based on the 
competitive-cooperative behavior of intelligent creatures solving a common problem. Such 
behavior of intelligent creatures can be observed anywhere in the world. A group of wolves or 
other predators may be a good example. If they are looking for food, they usually cooperate 
and compete so that if one member of the group is more successful than the previous best one 
(e.g. has found more food) then all members change their trajectories towards the new most 
successful member. It is repeated until all members meet at one food source. In SOMA, 
wolves are replaced by individuals. They ‘live’ in the optimized model’s hyperspace, looking 
for the best solution. It can be said, that this kind of behavior of intelligent individuals allows 
SOMA to realize very successful searches. The identification of local operating regimes for 
unknown plant is difficult. The flexibility offered by SOMA provides opportunity to optimize 
both validity function and model parameters simultaneously.  

 

INTERNAL MODEL CONTROL 
 

When the model is available, the Internal Model Control (IMC) is one of the widely 
used approaches for control of the linear systems. The IMC scheme, first proposed in (Morari 
and Zafiriou, 1989), has found a number of successful applications. Figure 3 shows the 
standard IMC control structure where Gs represents the transfer function of the process, GM 
is the process model and GR is the asymptotically stable transfer functions. The feedback 
signal is the difference and the regulator contains a model of the process explicitly. In fact, the 
IMC is a generalization of the Smith predictor.  
  

 
 

Figure 2 IMC block diagram 
 

The IMC synthesis is a two step method. The Controller GR is divided into two parts: 
.R Q FG G G=  

Firstly, the parameters of the controller GR has to be determined.  The best policy is to choose 
GQ as an approximated inverse of the process model GM, which will yield good tracking and 
disturbance rejection. In the second step the low-pass filter GF is augmented to ensure 
robustness. The structure and parameters of GF are chosen to achieve balance between robust 
stability and performance. The filter constant is the only parameter that has to be tuned, thus 
making the controller design simple.  



 
The IMC approach can be extended to nonlinear models based on local model. In 

general, the inversion of nonlinear model is not simple and analytical solution may not exist. 
The LMN structure enables the following inverse control law for the 2nd order plant to be 
defined: 
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The v(k) replaces y(k+1) since it is not available at time k. The set-point w(k) is filtered using filter  
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so the v(k) becomes  

( 1) ( ) ( ( ) ( ))Fy k v k G w k d k+ = −;  

where d(k)=yp(k)-ym(k) is the difference between the outputs of the plant and model.  

MODELING AND CONTROL OF CSTR 

The studied system is a pH neutralization tank. A schematic diagram of the pH 
neutralization process is depicted in Figure 2. The neutralization process represents a highly 
nonlinear process. The dynamic model used in this work has been developed by Hall and 
Seborg (1989) and has been used to test single loop strategies in (Hu et al, 2000, Townsend et 
al, 1997).  

 

 
Figure 3 pH neutralization plant scheme 

 
The process consists of an acid (HNO3) stream, a buffer (NaHCO3) stream and a base 

(NaOH) stream being continually mixed in a tank. The model is based on assumptions that the 
streams are perfectly mixed, the density is constant in the whole tank. The process aims at 
controlling the pH value (controlled variable) of the outlet stream by varying the inlet base 
stream Q3 (control variable). The outlet flow-rate is dependent on the fluid height in the tank 



as well as the position of the valve. Titration curve (Figure 4) shows the nonlinearity of the 
neutralization process. 
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Figure 4 Titration curve 
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Figure 5 Training data 

 
Training and validation data were obtained using perturbations on the base flow-rate, with 
sample period of 15s. The local models were chosen to have the form of the second-order 
ARX model such that the local model network had the form: 
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where ( )kψ is a vector of scheduling variables ( ) ( 1)k pH k= −ψ   
Five affine local model of the structure   
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were used to construct the local model network. For qualitative comparison, the mean sum squared 
error as in following equation is used as a modeling performance. Here, y is a vector of measured 
outputs, y)  is a vector of predicted outputs. 

( ) ( )1 TJ y y y y
N

= − −) )
 

Low value of the criterion signifies good modeling performance. The parameters of local 
models and validity functions were optimized with SOMA algorithm. The output of the 
resulted model is depicted in Figure 5.  
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Figure 5 Comparison of the model  data 

 
To control pH in the reactor the control scheme from Figure 2 was used. The obtained LMN 
was used as an internal model. Since the all the local models are affine the controller output 
was computed using the equation  
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The discrete filter with transfer function  
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was added to the inverse controller to achieve smooth controller output. The resulted set point 
tracking performance and controller outputs are shown in Figure 6. 
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Figure 6 Controller output and set-point tracking 

 



CONCLUSION 
The nonlinear model has to represent the system sufficiently and provide easy controller design. 

Thus the local model network modeling can be viewed as a controller design oriented method. The 
main idea is to construct a set of local transfer-function models to represent the dynamic system 
around each operating point, and then to connect the set of local models with validity functions to 
form a global dynamic model. The SOMA algorithm for the optimization of local model network was 
proposed. The approach optimizes both the local model parameters and validity function. The SOMA 
algorithm enables easy integrations of constraints for the local model parameters. The conventional 
IMC structure is adapted for plant description using local models. Simulation results for pH 
neutralization plant illustrate the potentional of the genetic algorithms for nonlinear system 
identification and control.  
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