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1 DCCE FCE ICT Prague
2 DSEE FNSPE CTU in Prague

Abstract

Any bipolar deterministic classifier is a function f : Rn → {−1,+1} where n is
an input space dimension. Having m patterns, we can evaluate its classification
ability in the terms of sensitivity se and specificity sp. The optimum determin-
istic classifier is thus a result of multicriteria optimization task (se, sp) = max.
Using Minkowski distance from ideal alternative (1, 1), we obtain compromise
optimization task

(
(1− se)p + (1− sp)p

)1/p = max for p ≥ 1

with a special form
min(se, sp) = max for p →∞.

Our approach is based on the set of H fixed classifiers f1, f2, . . . , fH with estimated
sensitivities se1, se2, . . . , seH and specificities sp1, sp2, . . . , spH . The stochastic clas-
sifier is based on the random selection of classifiers with disjoint probabilities
q1, q2, . . . , qH . After the application of mean value and convex hull of point set
in R2, we recognized that optimum stochastic classifier is based on two fixed
deterministic ones at most. Remaining H − 2 classifiers are ignored. The pair of
classifiers fu, fv with selection probabilities qu, qv, qu + qv = 1 is the main result
of optimization. Our methodology is an alternative to ROC1 analysis. Both
the individual deterministic classifiers and the selection of classifier pair were
realized in the Matlab environment.

1 Compromise Classifier

Let m+,m− ∈ N be numbers of positive and negative patterns. Let n,H ∈ N be a dimension of
pattern space and a number of classifiers. Let fk : Rn → {−1, +1} be a function of kth classifier
and sek, spk ∈ [0, 1] be its sensitivity and its specificity for k = 1, . . . ,H. According to MIA2

method, the best classifier satisfies

Fk = (1− sek)p + (1− spk)p = min
1≤k≤H

for p ≥ 1

or Fk = max(1− sek, 1− spk) = min
1≤k≤H

for p → +∞, respectively.

The orientation to the best possible compromise classifier is not the only one approach.
It is also possible to organize the optimum stochastic classification with fixed probabilities of
classifier selection.

Let qk ≥ 0 be a probability of kth classifier selection for k = 1, . . . ,H where
H∑

k=1

qk = 1.

The stochastic classifier begins with the random selection of classification index k∗ according
to the probabilities q1, . . . , qH in the first step. Then the final decision is given by formula

y = fk∗(x̄) with the sensitivity se∗ =
H∑

k=1

qksek and specificity sp∗ =
H∑

k=1

qkspk.

Introducing uk = 1− sek, vk = 1− spk, u∗ = 1− se∗, v∗ = 1− sp∗, we obtain

u∗ =
H∑

k=1

qkuk, v∗ =
H∑

k=1

qkvk

1Reciever Operating Characteristic
2Minkowski distance from ideal alternative (1, 1)



as distances from ideal alternative se∗ = sp∗ = 1.

Using MIA technique for p ≥ 1 and unknown selection probabilities, we obtain a convex
optimization task

(u∗)p + (v∗)p = min
u∗,v∗

,

u∗ =
H∑

k=1

qkuk,

v∗ =
H∑

k=1

qkvk,

H∑

k=1

qk = 1.

qk ≥ 0 for k = 1, . . . , H

It is easy to recognize than the task can be rewritten to more clear form

(u∗)p + (v∗)p = min
u∗,v∗

,

u∗, v∗ ∈ CH(S)

where CH(S) is a convex hull of point set S = {(1− se1, 1− sp1), . . . , (1− seH , 1− spH)}.
The special case p → +∞ comes to

max(u∗, v∗) = min,

(u∗, v∗) ∈ CH(S).

When (0, 0) ∈ S then at least one classifier is perfect, and thus selected with probability
qk = 1. But in the opposite case, the minimum of the convex objective function stands outside
the convex hull CH(S) and the constrained minimum exists in a boundary point of the convex
hull. The boundary of CH(S) is a convex polygon which can be systematically decomposed
to vertices and edges. Thus, the optimum classifier corresponds to the single vertex or to the
interval point of any edge which is a stochastic compromise between two vertices or classifiers,
respectively.

Let F∗(u∗, v∗) =

{
(u∗)p + (v∗)p for p ≥ 1
max(u∗, v∗) for p → +∞ . Then the algorithm of optimum classifi-

cation consists of four steps:

1. We define S =
{
(1− sek, 1− spk)

∣∣ k = 1, . . . , H
}
.

2. We define V ⊂ S as the set of convex hull vertices.

3. For every pair of neighborhood vertices r1, r2 ∈ V where r1 = (1 − sek1 , 1 − spk1),
r2 = (1− sek2 , 1− spk2), we solve the optimization task

F∗(u∗, v∗) = min,

u∗ = qk1(1− sek1) + qk2(1− sek2),

v∗ = qk1(1− spk1) + qk2(1− spk2),

qk1 , qk2 ≥ 0, qk1 + qk2 = 1.

4. Find the best pair of vertices.



The resulting values k1, k2, qk1 , qk2 enables to realize optimum stochastic classifier, which
is based on two deterministic classifiers at most. There are three possibilities:

(i) qk1 = 1. Then the optimal classifier is y = fk1(x̄).

(ii) qk2 = 1. Then the optimal classifier is y = fk2(x̄).

(iii) qk1 , qk2 > 0. Then the optimal classifier is y =

{
fk1(x̄) with the probability qk1

fk2(x̄) with the probability qk2

.

2 Generation of Individual Classifier

There are many possibilities how to generate various classifiers for given sets of positive and
negative patterns:

(i) Forming alternative pattern sets randomly (Bootstrap, any random selection).

(ii) Learning OLAM with various regularization parameter λ > 0.

(iii) Learning MLP, MLL, RBF with various initial estimates of weights.

(iv) Variation of given weight from optimum solution (w0 at least).

(v) Variation of ANN structure (setting several weights to zero in the process of learning).

Example: m+ = 5, m− = 4, H = 12.

Critical points (vertices of CH)

k sek spk

1 0.4 1
2 0.8 0.5
3 1 0
4 0.8 0
5 0 1

Single point classifier

p sek spk

1 0.4 1
2 0.8 0.5
∞ 1 0

Pair of classifiers

p se∗ sp∗ q1 q2

1 2/5 1 1 0
2 26/41 29/41 17/41 24/41
∞ 2/3 2/3 1/3 2/3

3 Source Codes in the MATLAB Environment

The library of general functions was created in the Matlab environment. The main function
STCLAMIA is a general tool for multicriteria classification when p ∈ [1, +∞)∪ {+∞}. This func-
tion calls fmincon and STCLAMIAOBJ functions in the case of p ∈ (1,+∞). Here, STCLAMIAOBJ is
only a convex objective function for constrained minimization. There are two useful functions:
STCLAAIA which is called for p = 1, and STCLAIIA which is called for p → +∞. The main func-
tion STCLAMIA calls the previous functions, collects the results and depicts them in the ROC
diagram (see the Fig. 1). The source codes are demonstrated in the Figs. 2–5.



4 Conclusions

A new stochastic method of binary classification was developed to improve the sensitivity and
specificity of classification process. Applying the theory of multicriteria decision making, the
resulting optimum system consists of two deterministic classifiers, which are taken at random.
The supporting library was created and tested in the Matlab environment.
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Figure 1: Convex hull of ROC space and optimum classifier for p →∞

function [Fopt,seopt,spopt,Wopt,qopt]=STCLAAIA(se,sp,W)
n=length(se); Fopt=1; kopt=1;
for k=1:n

F=1-se(k)+1-sp(k);
if F<Fopt

Fopt=F; kopt=k;
end

end
seopt=se(kopt); spopt=sp(kopt); Wopt=W(kopt,:); qopt=1;

Figure 2: Source code of STCLAAIA.m



function [Fopt,seopt,spopt,Wopt,qopt]=STCLAMIA(se,sp,p,W)
global STCLA_SE STCLA_SP STCLA_P
sele=se+sp>1; se=se(sele); sp=sp(sele);
sextd=[1;0;0;se]; spxtd=[0;1;0;sp]; nw=size(W,2);
Wxtd=[+ones(1,nw)*inf; -ones(1,nw)*inf; ones(1,nw)*NaN; W(sele,:)];
k = convhull(sextd,spxtd); sextd=sextd(k); spxtd=spxtd(k);
STCLA_SE=sextd; STCLA_SP=spxtd; STCLA_P=p;
W=Wxtd(k,:); n=length(k);
if p==inf

[Fopt,seopt,spopt,Wopt,qopt]=STCLAIIA(sextd,spxtd,W);
end
if p==1

[Fopt,seopt,spopt,Wopt,qopt]=STCLAAIA(sextd,spxtd,W);
end
if p>1 & p<inf

options = optimset(’LargeScale’,’off’,’Display’,’off’,’TolX’,1e-5);
xopt = fmincon(’STCLAMIAOBJ’,zeros(n,1),[],[],ones(1,n),1,...

zeros(n,1),ones(n,1),[],options);
[Fopt,seopt,spopt]=STCLAMIAOBJ(xopt);
selector=xopt>1e-6;
Wopt=W(selector,:); qopt=xopt(selector);

end

fill(1-spxtd,sextd,[0.9 0.9 0.9]); hold on
phi=0:pi/2000:pi/2;
if p<inf

r=Fopt./(cos(phi).^p+sin(phi).^p).^(1/p);
else

r=Fopt./max(cos(phi),sin(phi));
end
xxx=r.*sin(phi); yyy=1-r.*cos(phi); plot(xxx,yyy,’k-’)
plot(1-sp,se,’ko’,’markerfacecolor’,[1 1 1])
plot(1-spopt,seopt,’ko’,’markerfacecolor’,[0 0 0])
axis equal; axis([0 1 0 1]);
xlabel(’1 -{\it sp}’);ylabel(’{\it se}’); hold off

Figure 3: Source code of STCLAMIA.m

function [F,se,sp]=STCLAMIAOBJ(x)
global STCLA_SE STCLA_SP STCLA_P
u=(1-STCLA_SE)’*x; v=(1-STCLA_SP)’*x;
p=STCLA_P; se=1-u; sp=1-v;
F=(u^p+v^p)^(1/p);

Figure 4: Source code of STCLAMIAOBJ.m



function [Fopt,seopt,spopt,Wopt,qopt]=STCLAIIA(se,sp,W)
n=length(se); seopt=0; kopt=1; lambdaopt=0;
for k=1:n-1

d1=se(k)-sp(k); d2=se(k+1)-sp(k+1); den=d1-d2;
if den~=0

lambda=d1/den;
if lambda>=0 & lambda<=1

seast=se(k)+(se(k+1)-se(k))*lambda;
if seast>seopt

seopt=seast; kopt=k; lambdaopt=lambda;
end

end
end

end
spopt=seopt; Fopt=1-seopt;
Wopt=W([kopt kopt+1],:);
qopt=[1-lambdaopt; lambdaopt];
selector=qopt>1e-6;
Wopt=Wopt(selector,:);
qopt=qopt(selector);

Figure 5: Source code of STCLAIIA.m
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