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Abstract 

This work deals with noise removal from an image data based on MAP estimator. 
Statistical model of the marginal probability density function (PDF) of digital images 
in the wavelet domain based on generalized Laplacian is used by this estimator.  The 
model parameters was estimated by moment method. There has been presented 
powerful method for additive noise suppression. This method was also compared with 
other denoising algorithm based on suitable thresholding (Donoho-Johnston 
algorithm)  of the wavelet coefficients. 

1 Introduction 
For many applications in image processing area, e.g. image reconstruction, denoising etc., it is 

useful to know the prior statistical model of images. 
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Figure 1: Histogram of the wavelet coefficients 

Image can be represented by many linear or nonlinear transformations, e.g. Fourier, Karhunen-
Loève or Wavelet Transformations. A dyadic decomposition as a form of The Discrete Wavelet 
Transform [1] was used in this paper. The Dyadic decomposition transforms an image data into the 
statistically independent wavelet coefficients. These wavelet coefficients are characterized by the 
marginal distribution, which is sharp peaked at zero with steep tails (in contrast to Gaussian 
distribution). It is intuitively evident that smooth area of an image data produces small wavelet 
coefficient, but edges, transitions etc. produce small number of the large wavelet coefficients. It is 
generally known that the value of the sample kurtosis κ of the Gaussian distribution is equal to 3. κ is 
defined as a fourth moment of X, divided by fourth power of its standard deviation σ. There is a 
histogram of the wavelet coefficients in the Fig. 1. 

2 MAP estimator 
When we consider signal x contaminated by additive noise n 

 ,y x n= +          (1) 

then the estimation of x, using MAP estimator [2], is given by 
 ( ) ( ) ( ) ( ) ( ) ( )| |ˆ arg max | arg max | arg max ,x y y x x n xx x x

x y p x y p y x p x p y x p x= = ⋅ = − ⋅          (2) 

where pn presents the probability density function of the noise,  px denotes the prior probability density 
function of the signal (generalized Laplacian) and px|y(x|y) stand for the posterior PDF . In this case 
was chosen Gaussian probality density function (3) for noise (consider aditive Gaussian noise with 
zero mean, µ = 0)  and the generalized Laplacian for the signal (4) in the wavelet domain 
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3 Model of the Probability Density Function 
As mentioned in the first chapter, wavelet coefficients are characterized by interesting 

histogram, which is sharp peaked at zero with steep tails. The  PDF can be modeled by generalized 
Laplacian (S. G. Mallat) [3], which is given by  
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where parameter s controls the width of the distribution and parameter p controls the shape. These 
parameters should be estimated by moment method [2] (from second and fourth moment) or for 
example by least square error method. The estimation of parameters utilizing the least square error 
method minimizes the sum of the square of difference beetwen model of the probability density 
function and normalized histogram. This estimation method holds only for signal without additive 
noise. When signal is contaminated by additive noise then parameters can be estimated using moment 
method [2]. In our case were used the values of the parameteres, which were estimated from our image 
database, which contains a huge amounts of the scientific and multimidia images. Parameter p it takes 
value, for multimedia images, from 0.6 to 1.1. 

4 Results 
The implementation of the denoising algorithm can be seen in the Fig. 2, where DWT denotes 

the Discrete Wavelet Transform, MAP est. presents MAP estimator and IDWT stand for Inverse 
Discrete Transform. Four subbands are obtained in the first level of dyadic decomposition (DWT). 
This subbannds are called: LL1 – approximation, HL1 – vertical details, LH1 – horizontal details, 
HH1 – diagonal details. 

MAP EST.

DWT DWT DWT

IDWT

HH1, HL1, LH1
HH2, HL2, LH2

LL1
LL2

y x n= +

( )x y

MAP EST.

DWT DWT DWT

IDWT

HH1, HL1, LH1
HH2, HL2, LH2

LL1
LL2

y x n= +

( )x y

 
Figure 2: The implementation of the denoising algorithm 

Below can be seen the function BayesDen, which represents implementation of the MAP 
estimator in accordance with equation (2) 

function[band_den] = MAP_Den(band_noise,step,sigma,'method') 
where band_noise denotes the wavelet coefficients of the noise signal, step presents sampling 
step of the PDF’s, 'method' can be 'nlse' or 'moment' and sigma is a standard deviation of 
the Gaussian additive noise.  
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Figure 3: Transfer function, band HL3, a) MAP estimator, b) soft thresholding, c) hard thresholding 



The transfer function of the MAP estimator and the transfer function of the soft and hard 
thresholding estimator shows the Fig. 3. There is a summary of obtained PSNR in the Fig. 4. PSNR for 
8-bits images can be computed by 
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where 255 denotes the maximum pixel value in image and MSE means Mean Square Error.  
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Figure 4: PSNR and testing image 

5 Conclusion 
As can be seen in the Fig. 4, in this experiment, the best results were obtained by MAP 

estimator. The denoising methods, which are based on Bayesian statistics are one of the most powerful 
methods for additive noise suppression. There has been presented MAP estimator, which uses 
statistical models (based on generalized Laplacian) of the wavelet coefficients like a prior description 
of the images. The further work will deal with modeling of the dark frame images. 
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