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Abstract

This paper describes a MATLAB package for dynamic optimisation of processes.

The package dynopt searches for profiles of decision variables which optimise

a given performance index under specified constraints. The package uses the

method of orthogonal collocations on finite elements and several case studies are

successfully tested. The MATLAB source code is freely available at the package

web page http://www.kirp.chtf.stuba.sk/∼fikar/research/dynopt/dynopt.htm.

1 Introduction

The objective of dynamic optimisation is to determine, in open loop control, a set of deci-
sion variable time profiles (pressure, temperature, flow rate, current, heat duty, . . . ) for a
dynamic system that optimise a given performance index (or cost functional or optimisation cri-
terion)(cost, time, energy, selectivity, . . . ) subject to specified constraints (safety, environmental
and operating constraints). Optimal control refers to the determination of the best time-varying
profiles in closed loop control.

The numerical methods used to find a deterministic solution of dynamic optimisation
problems can be grouped into two categories: indirect and direct methods. In this work only
direct methods are considered. In this category, there are two strategies: sequential method
and simultaneous method. The sequential strategy, often called control vector parameterisation
(CVP), consists in an approximation of the control trajectory by a function of only a few
parameters and leaving the state equations in the form of the original differential algebraic
equation (DAE) system [7]. In the simultaneous strategy, both the control and state variables
are discretised using polynomials (e.g., Lagrange polynomials) of which the coefficients become
the decision variables in a much larger Nonlinear Programming problem (NLP) [2].

In this paper, the method of orthogonal collocation on finite elements is developed based
on [2; 9]. It is implemented purely in MATLAB as a collection of M files without any MEX/DLL
interface. For the solution of NLP, standard Optimisation Toolbox is used. Its aim is to provide
a simple interface to dynamic optimisation. Is is suitable for typical problems in chemical and
biochemical industries. When compared to lower (compilator based) programming languages, a
typical solution time is longer. However, the total time of learning and simplicity makes rapid
development and integration with other packages possible. The source code of the package is
available free at the web pages of authors.

The outline of the paper is as follows. In the next section we sketch a general NLP
formulation for optimal control problems using orthogonal collocation on finite elements method,
which is implemented in the dynamic optimisation package (dynopt). Section 3 shows how to
define a given control problem with dynopt. In section 4, we present some known examples from
literature dealing with chemical reactors which are then solved and discussed in section 5.

2 NLP Formulation Problem

Consider the following general dynamic optimisation problem for t ∈ [0, tf ] which comprises a
Meyer-type cost functional, a process dynamic model described by a set of ordinary differential
equations (ODE), and equality and inequality constraints.

http://www.kirp.chtf.stuba.sk/~fikar/research/dynopt/dynopt.htm
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Figure 1: Finite-element collocation discretisation for state profiles, control profiles and element
lengths

min
u(t)

J [x(tf )] (1)

such that

ẋ(t) = f [t,x(t),u(t)], x(0) = x0

h[t,x(t),u(t)] = 0

g[t,x(t)u(t)] ≤ 0

x(t)L ≤ x(t) ≤ x(t)U

u(t)L ≤ u(t) ≤ u(t)U

where

J [x(tf )] – objective function evaluated at final conditions,

f – vector of differential equations,

h – vector of equality constraints,

g – vector of inequality constraints,

x(t) – state vector,

u(t) – control vector,

x0 – process initial conditions,

L,U – lower and upper profile bounds.

In order to convert problem (1) into NLP problem, the orthogonal collocation on finite
elements is used (Fig. 1). The optimal control problem (1) is then solved by complete param-
eterisation of both, the control and the state vectors [3; 9; 10]. That means that the control
and state profiles on one time interval are approximated by linear combination of some basis
functions (Lagrange polynomials (2), (3)).

xK+1(t) =
K

∑

j=0

xijφj(t); φj(t) =
K
∏

k=0,j

(t − tik)

(tij − tik)
(2)

in element i, i = 1, . . . ,NE

uK(t) =

K
∑

j=1

uijθj(t); θj(t) =

K
∏

k=1,j

(t − tik)

(tij − tik)
(3)

in element i, i = 1, . . . ,NE



Here k = 0, j means that k starts from 0 and k 6= j, NE is the number of elements. Also xK+1(t)
is a (K + 1)th order (deg < K + 1) piecewise polynomial and uK(t) is Kth order (deg < K)
piecewise polynomial. The difference in orders is due to the existence of the initial conditions
for x(t), for each element i. The times tij are given as roots of the Legendre polynomials on
interval [0, 1].

The problem (1) now becomes:

min
xij ,uij ,∆ζi

J(xf ) (4)

such that

x10 − x0 = 0, tf −

NE
∑

i=1

∆ζi = 0

∆ζrij = ẋk+1(tij) − ∆ζif(tij,xij,uij) = 0,

i = 1, . . . ,NE j = 1, . . . ,K

xi0 − xi−1
K+1(ζi) = 0, i = 2, . . . ,NE

xf − xNE
K+1(ζNE+1) = 0

uL
i ≤ ui

K(ζi) ≤ uU
i , i = 1, . . . ,NE

uL
i ≤ ui

K(ζi+1) ≤ uU
i , i = 1, . . . ,NE

∆ζL
i ≤ ∆ζi ≤ ∆ζU

i i = 1, . . . ,NE

h(tij ,xij ,uij) = 0, g(tij ,xij,uij) ≤ 0

xL
ij ≤ xK+1(tij) ≤ xU

ij, i = 1, . . . ,NE, j = 0, . . . ,K

uL
ij ≤ uK(tij) ≤ uU

ij, i = 1, . . . ,NE, j = 1, . . . ,K

where

i – refers to the element,

j – refers to the collocation point,

∆ζi – finite-element lengths,

x0 = x(0) – the value of the state at time t = 0,

xf = x(tf ) – the value of the state at the final time t = tf ,

h – the equality constraint evaluated in time tij,

g – the inequality constraint evaluated in time tij,

xij ,uij – the collocation coefficients for the state and control profiles,

Problem (4) can be now solved by any standard nonlinear programming solver.

To solve this problem within MATLAB, we use the Optimization Toolbox which includes
several programs for treating optimisation problems. In this case function fmincon was choosen.
This can minimise/maximise a given objective function subject to nonlinear equality and in-
equality constraints. In order to use this function it was neccessary to create and program series
of additional functions [13]. The resulting code is called dynopt. The use of this code is presented
in next section.

3 Tutorial

This section presents a tutorial of to dynopt.



3.1 Problem Definition

Consider the following problem [5; 6; 8]

min
u(t)

J =

∫ tf

0
(x2

1 + x2
2 + 0.005u2)dt (5)

such that

ẋ1 = x2 x1(0) = 0

ẋ2 = −x2 + u x2(0) = −1

0 ≥ x2 − 8(t − 0.5)2 + 0.5 ∀t

tf = 1

where

x1(t), x2(t) – states,

u(t) – control vector.

As the objective function is not in the Meyer form needed by dynopt, we define an additional
differential equation

ẋ3 = x2
1 + x2

2 + 0.005u2, x3(0) = 0 (6)

and rewrite the cost as
min
u(t)

J = x3(tf ) (7)

3.2 User Functions Definitions

Step1: Process

function sys = process(t,x,flag,u)

switch flag,

case 0

sys = [x(2);

-x(2)+u;

x(1)^2+x(2)^2+0.005*u^2];

case 1

sys = [0 0 2*x(1);

1 -1 2*x(2);

0 0 0];

case 2

sys = [0 1 0.01*u];

case 3

sys = [0 0 0];

case 4

sys = [0;-1;0];

otherwise

error([’unhandled flag = ’,num2str(flag)]);

end

dynopt optimises a given performance index evaluated at the final conditions subject to the
constraints which can be evaluated at the initial conditions or over the full time interval or at



the final conditions. Thus the input arguments of objfun and confun are as follows: t - scalar
value representing tij , x - state vector evaluated at corresponding time tij, u - control vector
evaluated at corresponding time tij. objfun should be defined as follows:

Step2: Objective Function

function [f,Dft,Dfx,Dfu] = objfun(t,x,u)

f=x(3);

Dft=[];

Dfx=[0;0;1];

Dfu=[];

The given constraints should be written in M-file confun.m as follows:

Step3: Constraints

function [c,ceq,Dct,Dcx,Dcu,Dceqt,Dceqx,Dcequ] = confun(t,x,u)

c=x(2)-8*(t-0.5)^2+0.5;

ceq=[];

Dct=[-16*t+8];

Dcx=[0;1;0];

Dcu=[];

Dceqt=[];

Dceqx=[];

Dcequ=[];

Step4: Optimisation After the problem has been defined by the above mentioned functions,
user invokes the dynopt function as follows:

opt = optimset(’LargeScale’,’off’,’Display’,’iter’);

opt = optimset(opt,’GradObj’, ’on’,’GradConstr’,’on’);

opt = optimset(opt,’TolFun’,1e-5);

opt = optimset(opt,’TolCon’,1e-5);

opt = optimset(opt,’TolX’,1e-5);

u = [13 4 -0.5 -2 -1.8 0 0.5 2 0 0];

time = 0.1*ones(10,1);

[x,fval,exitflag,output]=dynopt(1,2,4,2,time,1,u,[],[],’objfun’,’confun’, ...

’process’,opt);

Step5: Interpretation of Results The results returned by dynopt in x contain optimal
values of xij,uij, and eventually of ∆ζi and can be interpreted by example in a graph. This can
be done by using additional functions tuxprint and tcceqprint which prepare plotable profiles for
control variables, state variables, and also for constraints. In our case these two functions can
be invoked as follows:

[time,state,control] = tuxprint(x,4,2,10,1,3,1000);

[tp,cp,ceqp] = tcceqprint(2,x,4,2,10,1,3,’confun’,1000);
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Figure 2: Optimal trajectory found for tu-
torial problem - control
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Figure 3: Optimal trajectory found for tu-
torial problem - constraint

Optimal control and the constraint are shown in Fig. 2 and Fig. 3, respectively. Note, that the
constraint is satisfied in collocation points only – this is given by the orthogonal collocation
approach.

4 Case Studies

In this section we present the examples from literature solved by dynopt.

4.1 Car Optimisation

Consider a following minimum time problem [4; 9; 12]:

min
u(t)

J = tf (8)

such that

ẋ1 = u x1(0) = 0 x1(tf ) = 0

ẋ2 = x1 x2(0) = 0 x2(tf ) = 300

u ∈ [−2, 1]

where

x1(t) – velocity,

x2(t) – distance,

u(t) – control variable (acceleration).

4.2 Tubular Reactor

Consider a tubular reactor with parallel reactions A → B, A → C [4; 9; 12]:

max
u(t)

J = x2(tf ) (9)



such that

ẋ1 = −(u + 0.5u2)x1 x1(0) = 1

ẋ2 = ux1 x2(0) = 0

u ∈ [0, 5] tf = 1

where

x1(t) – dimensionless concentration of A,

x2(t) – dimensionless concentration of B,

u(t) – control variable.

4.3 Batch Reactor

Consider a batch reactor [4; 12] the consecutive reactions A → B → C:

max
u(t)

J = x2(tf ) (10)

such that

ẋ1 = −k1x
2
1 x1(0) = 1

ẋ2 = k1x
2
1 − k2x2 x2(0) = 0

k1 = 4000e(− 2500

T
) k2 = 620000e(− 5000

T
)

T ∈ [298, 398] tf = 1

where

x1(t) – concentration of A,

x2(t) – concentration of B,

T – temperature (control variable).

4.4 Plug Flow Reactor

Consider a catalytic plug flow reactor [4; 12] with the following reactions:
A ↔ B → C

max
u(t)

J = 1 − x1(tf ) − x2(tf ) (11)

such that

ẋ1 = u(10x2 − x1) x1(0) = 1

ẋ2 = −u(10x2 − x1) − (1 − u)x2 x2(0) = 0

u ∈ [0, 1] tf = 12

where

x1(t) – mole fraction of A,

x2(t) – mole fraction of B,

u(t) – fraction of type 1 catalyst.



4.5 CSTR

Consider the following problem of continuously stirred tank reactor (CSTR) [1; 6; 11]

max
u(t)

J =

∫ 0.2

0

(

5.8(qx1 − u4) − 3.7u1 − 4.1u2

+ q(23x4 + 11x5 + 28x6 + 35x7) − 5.0u2
3

− 0.099
)

dt (12)

such that

ẋ1 = u4 − qx1 − 17.6x1x2 − 23x1x6u3

ẋ2 = u1 − qx2 − 17.6x1x2 − 146x2x3

ẋ3 = u2 − qx3 − 73x2x3

ẋ4 = −qx4 + 35.2x1x2 − 51.3x4x5

ẋ5 = −qx5 + 219x2x3 − 51.3x4x5

ẋ6 = −qx6 + 102.6x4x5 − 23x1x6u3

ẋ7 = −qx7 + 46x1x6u3

x(0) = [0.1883 0.2507 0.0467 0.0899 0.1804 0.1394 0.1046]T

q = u1 + u2 + u4

0 ≤ u1 ≤ 20

0 ≤ u2 ≤ 6

0 ≤ u3 ≤ 4

0 ≤ u4 ≤ 20

tf = 0.2

where

x1(t) − x7(t) – states,

u1(t) − u4(t) – controls.

Again, the cost function can be rewritten to the Meyer form by introducing a new state defined
by the integral function with its initial value equal to zero.

5 Results and Discussion

For all the examples, a piecewise linear profile for the control variable was used. We have used
2 time elements (example 1), 4 time elements (examples 2–4), and 10 elements (examples 5, 6)
and precision 10−5 (if not stated otherwise).

The first problem (Section 4.1) consists of starting and stoping a car in minimum for a fixed
distance (300 units). This problem was treated by [2; 9; 10] and the optimal value of 30 time
units was reported. By using 4 collocation points for state variables and 2 collocation points
for control variable we obtained the same value of performance index as from the literature.
Optimal control and state profiles are shown in Fig. 4, Fig. 5, and Fig. 6.

The second problem (Section 4.2) is a tubular reactor control problem where the state
variable x2 at final time has to be maximised. This problem was treated by [4; 9; 12] and the
optimal value (0.57353) was reported by [4; 9] and optimal value (0.57284) was given by [12].
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Figure 4: Optimal trajectory found for Ex-
ample 4.1 - control (acceleration)
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Figure 5: Optimal trajectory found for Ex-
ample 4.1 - velocity
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Figure 6: Optimal trajectory found for Ex-
ample 4.1 - distance
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Figure 7: Optimal trajectory found for Ex-
ample 4.1 - control

By using 4 collocation points for state variables and 2 collocation points for control variable
we obtained the value of performance index 0.5729. Optimal control trajectory is presented
by Fig. 7.

The objective in problem described in Section 4.3 is to obtain the optimal temperature
profile that maximizes x2 at the end of a specified time. The problem was solved by [9; 12] and
the reported optimum (0.610775) was found by [9] and (0.61045) obtained by [12]. We were
able to obtain the value of 0.6107 by applying 3 collocation ponits for state variables and 2
collocation points for control variable. Optimal temperature profile is presented by Fig. 8.

Optimisation of problem in Section 4.4 has also been analysed. This problem was solved
by [9; 12] and the optima (0.476946, 0.47615) were found. Value of the performance index
obtained for this example using dynopt is 0.4770. In this case 4 collocation points for state
variables and 2 collocation points for control variables were used. Optimal control trajectory is
presented by Fig. 9.

Maximisation problem in Section 4.5 was treated by [1; 6; 11]. Four control variables
of a chemical reactor are optimised in order to obtain maximum economic benefit. Reported
optimal value (21.757) was obtained using CVP method inplemented in DYNO [6] and also in
other references. For this example, 4 collocation points for state variables and 2 collocation
points for control variables were choosen and an optimum was found at value 21.8003. Note
however, that better value can be explained by the use of linear control profiles compared to
piece-wise constant approximations in references.



0 0.2 0.4 0.6 0.8 1
300

310

320

330

340

350

360

370

380

390

time

u

Figure 8: Optimal trajectory found for Ex-
ample 4.2 - control
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Figure 9: Optimal trajectory found for Ex-
ample 4.3 - control

Note, that all the results obtained by orthogonal collocation on finite elements method
implemented within MATLAB-dynopt are only local in nature, since NLP solvers are only based
on necessary conditions for optimality.

6 Conclusion

The orthogonal collocation on finite elements has been developed and implemented within MAT-
LAB environment. It has been tested on a few examples from the literature dealing with chemical
reactors. The examples were chosen to illustrate the ability of the dynopt package to treat the
problems of varying levels of difficulty.

The package dynopt is able to obtain results in a good agreement with the referenced
works. From the user point of view, it is implemented in MATLAB and thus aimed for a large
base of its users. Its main purpose is to make possible a rapid development and testing of
dynamic optimisation problems and incorporation to higher level problems.

It must be noted that optima obtained are only local in nature. Our future work will
be devoted to global optimisation problems where the package can provide local results for the
global problems.
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