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Abstract: The contribution compares various methods for the implementation of the EEG signal
fractional delay block. The target of the application is to compensate the sampling instant time shift
caused by the channel time multiplexing of the EEG signal AD conversion. Three methods to shift
the signal are presented: linear and quadratic interpolation in the time domain as well as the DTFT
application. Simple FIR filters are designed for the proposed methods and the best method is chosen for
the EEG processing.
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1 Introduction

EEG recording machines usually contains one AD converter which digitalises all the recorded EEG
channels. The channels are converted sequentially, one after the other and thus time multiplexed. This
brings problems with subsequent EEG processing because of the time shift between the sampling instants
of the single channels. To present an example of such a problem let us recall the commonly used surface
laplacian filter (see e.g. [11]). This filter should attenuate the EEG activity which is common to all the
involved channels in order to improve the spatial resolution of the recorded signals. The time shift of the
sampling instants of the EEG channels results in disturbing of this behaviour as will be shown later.

Suggested technique is useful even when the surface filtration is not used. A typical example is the work
published in [2] in which the authors computed spatial spectrum from raw EEG without compensation.
The introduced noise under such a conditions was a subject of [9]. The authors of [1], [5] or [8] might
utilise our approach as well. Further application of our method is the EEG preprocessing for PCA/ICA
transformation. ICA (see [3] or [4]) requires all processing signals sampled simultaneously.

The problem itself might be overcome in two ways:

1. using the EEG machine with the same numbers of AD converters as channels. This solution will
work perfectly, its only drawback is the cost – if you sample 128 channels, you will need 128 AD
converters.

2. post-filtering the data and time shifting them after recording. This approach avoids costly hardware
and allows reasonable well time-shift compensation as will be discussed below.

The contribution is organised as follows: in the next section we will deal with the fractional delay
realisations; then filter properties are discussed and improvement of the surface laplacian is presented in
Section 3. Finally, Matlab implementation of the whole framework is presented and some conclusions are
drawn.

2 Fractional Delay Realisations

A typical EEG recording machine contains only one AD converter used for all EEG channels (electrodes)
digitalisation. The channels are sampled sequentially, one after the other – they are time multiplexed.
This results in shifting of the sampling instants1 and introduces a systematic error to the measurement.
The importance of the error depends on the sampling frequency fs = 1

Ts
, length of AD conversion period

TAD and on processing used afterwards.
The introduced noise might be compensated by means of suitable interpolation method. The following

possibilities are obvious:

1. linear interpolation – proposed in [7]. The new sample x[t] is computed from the neighbouring
samples x[t], x[t − 1] (δ = TAD/Ts, signal is sampled at the electrode with index s; the sampling
instant is sTAD delayed compared to the zeroth electrode sample time):

x′[t] = x[t] + x[t + 1] − x[t](−s)δ. (1)

Required computational power is quite low for this approach – the number of operations is propor-
tional to the overall number of samples T – O(T ).

1 We are avoiding the term “jitter” through the text intentionally. Compared to aperture or clock jitter – see e.g. [6]
– this process is not random in nature. The introduced error is systematic and deterministic one.



2. higher order interpolation – e.g. interpolation with the polynomial function of the second order:

x′[t] = (−s)2δ2(
x[t − 1] − 2x[t] + x[t + 1]

2
) + (−s)δ

x[t + 1] − x[t − 1]

2
+ x[t]. (2)

The number of operations is again proportional to the overall number of samples – O(T ).

3. time shift in the spectral domain – DTFT is applied, the phase spectrum is rotated and IDTFT
is computed ([10]):

X = DTFT (x)

X[k] = X[k]e−j2π(−s)δk

x′ = IDTFT (X)

This approach perfectly suppress the sampling error influence on the filter output signal-to-noise
ratio. The less desirable fact is higher computational complexity of the solution; for the vector of
T samples processing at least O(T logT ) operations are needed.

All the interpolations might also be viewed as filters. Their transfer functions (after some rearrange-
ment and time shift in order to get causal systems) might be expressed as follows:

linear Hl(jω) = −sδ + e−jω(1 + sδ)
quadratic Hq(jω) = 1

2 (s2δ2 − sδ) + e−jω(1 − sδ2) + 1
2e−jω2(s2δ2 + sδ)

DTFT HD(jω) = ej 2πnsδ

N .

(3)

All transfers are compared in Fig. 1. Obviously, all three filters have nearly identical phase charac-
teristic and differ in the magnitude response. While the DTFT filter has |HD(jω)| exactly equal to 1,
the transfer function |Hq(jω)| of the quadratic interpolator is approximately constant and its value only
slightly depends on the δ value. The |Hl(jω)| exhibits the worst behaviour of all.

3 Impact on the Surface Laplacian Filtration

The digitised EEG channels are filtered after recording. The purpose of this filtering is to remove the
damping and mothing caused by the skull, scalp and cerebrospinal fluid on the sampled signals. Suitable
surface filter is used for this purpose – usually one of the variants of laplacian ([11]). The frequency
response of the surface filter has high-pass character in contrast to low-pass transfer function of the head
and bone layers. Thus, under ideal conditions, all the attenuation of EEG inside the head is compensated
in the subsequent surface filtration. However, this is often not the case – see [11]. One of the noise sources
in the filtration process is related to the sampling time instant error mentioned above. The sampling
error adds additive noise to the reference-free filtered output signal.

It is possible to compute the output error magnitude (common noise level) theoretically. At first, we
have to introduce the following definitions:

• N – the number of electrodes located on the scalp

• fs = 1
Ts

– the sampling rate

• Vi[t] – the potential under electrode with index i in time instant t

• V ′

i – the resultant electrode potential (after filtering)

• c – the surface filter central electrode index; we compute the potential under this electrode

• S – the sequence of main electrode neighbours. S contains all indices of the surrounding electrodes
used for the computation

• k[i] – filtration coefficients – sequence (k[i] is the coefficient corresponding to the electrode with the
index i)

• M – the total number of electrodes used during the computation.



0 5 10 15 20 25 30 35 40
−0.08

−0.06

−0.04

−0.02

0

Frequency [Hz]

|H
| [

dB
]

Transfer function magnitude in the region of interest

0 5 10 15 20 25 30 35 40
−1

−0.8

−0.6

−0.4

−0.2

0

Frequency [Hz]

ar
g 

H
 [r

ad
]

Transfer function argument in the region of interest

Figure 1: The transfer functions of the three interpolation techniques. The magnitude of the transfer is
shown in the upper plot. Dashed line is for the linear, dotted for DFT, and solid for quadratic interpolation
(they are nearly overlaid here). The linear interpolation exhibits the worst behaviour – the curve falls
fast from 0dB compared to the more convenient quadratic interpolation behaviour and ideal DFT curve.
The phase response of all three filters is linear, resulting in ADC introduced delay compensation (all the
three responses are overlaid here and drawn as one solid). The pictures were computed for δ = 10TAD,
our measurement configuration. Although the differences in the magnitude spectrum between the linear
interpolation and the two other approaches are very small (less than 0.08dB) they are crucial and result
in substantial differences in the quality of the results as will be shown below.
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Figure 2: CST with SSL filter. CST is computed from (6) and drawn with dotted line. The solid
line is CST computed with real EEG without interpolation, dashed line marks CST level with linear
interpolation and dashed-dotted line with quadratic interpolation. The CST was obtained as the mean
value of CSTs computed for one hundred different realisation of real input EEG at the SSL filter input.
Obviously, the linear interpolation lowers the filtration quality. See discussion in the text.



The filtration can be generally described using introduced symbols

V ′

c [t] = Vc[t] +

M−1
∑

i=0

k[i]VS[n][t]. (4)

Let’s suppose that a harmonic signal with a generic phase shift ϕ and unity amplitude will be fed to
all the filter inputs so as we can evaluate the common signal frequency response. This will give us the
information on the filter common mode noise suppression behaviour. The sampling instant shift is taken
into account as well. The resulting potential under electrode with index S[i] is

VS[n][t] = sin(ωtTs + ϕ + S[i]TADω), (5)

where the last product S[i]TADω represents the mentioned sampling instant shift. Now we will put (5)
into the context of the (4) equation and after some rearrangement we get the following common signal
transfer function:

|H(ω)|dB = 20log
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Analysis of the equation (6) leads to the following conclusions: the CST grows with

• growing ratio of the ADC conversion time TAD to the sample period Ts = 1/fs

• growing number of electrodes used for recording

• CST is higher with higher common signal frequency.

The second notable thing is that we are dealing with surface correlated signals; the CST quantifies
the amount of spatially correlated noise suppression.

The demonstrational example is computed for the experimental configuration used in our
experiments:fs = 256Hz, TAD = 7.81µsec (ADC conversion time), N = 41 electrodes. The electrodes
are placed equidistantly in an orthogonal grid vertices above both sensomotoric areas of the experimental
subject. Their spacing is chosen as 2.5cm (see e.g. [11]). The presented examples of CST were computed
for spatial filter driven by the real EEG signal.

The shape of CST for the small surface laplacian filter (see [7]) after quadratic as well as linear
interpolation of the real EEG is described in Fig. 2. It is noticeable that the theoretic (dotted) noise
level computed according to formula (6) is in good agreement with the real noise level marked with solid
line; the CST level gained with linear interpolation is higher than the level without any interpolation
(the noise is less suppressed). The quadratic interpolation improves the results by about 10dB.

Further, the observed results are in compliance with the behaviour of the interpolating filter drawn in
Fig. 1. The linear interpolator attains worse results than the quadratic one due to its far-from-constant
magnitude characteristic.

4 Matlab Implementation

Our work is targeted to the design of the brain-computer interface (see e.g. [12] or [13]). A complete
framework for experimenting with the EEG signal was implemented in Matlab, C++ and Bourne shell.
The whole system covers the following parts of the processing:

EEG extraction a C++ program reads the files with recorded EEG and generates text files with EEG
data for the subsequent Matlab processing.

delay compensation and surface filtration a Matlab script reads the extracted data as well as the
coordinates of the electrodes on the experimental person’s scalp, compensates the sampling instant
shift and finally performs the surface filtration.

separation is done in Matlab, too. The input are the filtered EEG data and the position of the mental
states in the EEG, the output are the single realisations of the appropriate mental states.

parameterisation generates parameterised realisations of the EEG for the following classification.
Various parameters can be used – among others FFT lines, LPC coefficients or AR coefficients.



classification is performed with the help of the HTK toolkit – a suite of C++ programs implementing
the Hidden Markov Model classifier.

results analysis is a set of scripts again written in Matlab which supports the analysis of the classifi-
cation results. Average classification scores and various others statistical indicators are computed
on the base of the classification outputs.

In addition, a lot of Matlab functions written for and targeted to EEG processing exist. Two examples
of the performed tasks follow:

statistical analysis – sign, F, T or χ2 tests applied on the EEG to reveal hidden patterns in the signal,
display confidence interval, etc. The output of such a test might be e.g. the movement-related EEG
pattern detection probability.

short-time power spectra analysis – computation of the time-development of the short-time power
spectra, normalisation and further processing.

The system is still under development, its evolution reflects the current research needs. Currently,
one of our students work on ICA functionality integration to the system (a third-party product, FastICA
toolbox, will be used) to test the impact of the ICA denoising properties on the EEG classification.

5 Conclusion

The idea of interpolation was originally mentioned in [7]. However, the presented linear interpolation
seems to be unsatisfying under some conditions (see Fig. 2). Thus we proposed the application of higher
order interpolation or the DTFT application. The model for CST computation without the compensation
was presented and compared with real system behaviour. While quadratic interpolation gives only an
approximative common signal suppression, the Fourier transform compensates the error absolutely. The
improved surface filtration is performed in two steps – first a delay correction is made and then the SSL
filter is applied on the corrected channels.

The selection of the used countermeasures lies on the researcher doing the EEG measurement. The
proper method shall be selected on the base of the used electrode configuration, EEG machine parameters
and AD converter number of bits.
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