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Abstract: Learnable arti�cial neuron is a basic element of ANN. There are various approaches to its
learning. The techniques of constrained minimization were used instead of traditional back-propagation.
The learning tasks were converted to several optimization tasks and then solved using optimization tool-
box in Matlab. Numerical results were compared and discussed.

Keywords: neural network, perceptron, pattern recognition, optimization, Matlab.

1 Introduction

Our aim was to prove the possibility of using the perceptron network to classify binary images, whereas
the weights were adjusted through constrained optimization. We can use various methods to recog-
nize 2D objects, but many of them depend on translation, scaling, or rotation of the image. One of
the methods, independent of these transformations, is called moment invariants method. The TSR
invariant system based on invariant moments was introduced by Hu [3]. Preprocessing includes binary
object separation; calculation of general, central, standardized, and invariant moments; and standard-
ization of invariant moments. The traditional perceptron was used for �nal recognition.

2 Task description

Having a set of 2D binary images of various types, shifts, sizes, and angles of rotation, we tried to
categorize them by means of perceptron network. We used ten classes of 2D objects. Every class is
represented by sixteen objects in the training set (TRS) and using two objects in the testing (veri�cation)
set (TSS).

3 Invariant preprocessing

Any general binary image can be represented as a function f : R2 ! f0; 1g. Three types of moments
are de�ned in the literature [2]: general, central, standardized central moments. On the basis of these
moments Hu [3] developed the system of seven TSR invariant moments:
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where �pq is standardized central moment of p+ q order.

4 Invariant pattern set

Every 2D binary object is than converted to the vector ~' = ('1; : : : ; '7) 2 R
7 which represents the object

in 7th dimensional vector space. Aplying the previous principle tom 2 N objects, we obtained the matrix



representation of given pattern set
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where �ij is the value of jth invariant for the ith object, m 2 N is the number of objects. With regard
of unbalanced intervals of components, the column standardization is necessary. Then the standardized
matrix �� has the following form

��ij =
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where k = 1; : : : ;m, m is the number of objects. The task will be solvable if the data measured are
separable. Owing to linear nonseparability of one class in 7D, we must approach feature space extension.
The new vector of features will have the form ~ = ( 1; : : : ;  7;  
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35 where  1; : : : ;  7 are standardized components of the original vector ~' = ('1; : : : ; '7). Experiment

proved that all the data are linearly separable in this 35th dimensional space.

5 Nonlinear SSQ minimization

It is possible to use

� Newton method

� Gauss - Newton method

� Levenberg - Marquardt method

for nonlinear SSQ minimization [4].
As regards the Newton method convergence, it is not so good and this method has a number of

drawbacks. The Gauss - Newton method solves the criterion minimization problem in the form of least
squares
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where h(~x) is a nonlinear function. Hence, they are nonlinear least squares. The plain form of the Gauss
- Newton method is based on the linearization of function h(~x) at point ~xk. Then

h(~x)
:
= h(~xk) +5h(~xk)(~x� ~xk):

We get the new iteration by means of the minimization of the linear approximation norm, and hence
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Provided matrix (5hT (~xk)5 h(~xk)) is singular, we make it regular by choosing such diagonal matrix
4k in order that matrix (5hT (~xk)5h(~xk)+4k) should be positively de�nite. Choosing matrix 4k as
4k = �kI; (�k > 0); we get the so-called Levenberg - Marquardt method. Then the iterative algorithm
is

~xk+1 = ~xk � (5hT (~xk)5 h(~xk) + �kI)�1(5h(~xk))Th(~xk):

While coe�cient �k is small, the method approximates the Gauss - Newton method, whereas when
coe�cient �k approaches in�nity, we approximate the steepest descent mehod. The problem is to choose
the appropriate coe�cient �k. First it must be as big as possible to advance towards the optimum,
and when we are near the optimum, then, on the contrary, it must be small to warrant the algorithm
convergence.

6 Perceptron

This neural network represents a model of the nonlinear system. Perceptron [1] is a neural network with
n input and one output neuron. The projection of input signal (x1; : : : ; xn) to the output is given by
the formula
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where it is necessary to determine weights wk for k = 0; : : : ; n. Weights determination leads to solving
the problem of nonlinear least squares. This problem is called learning or training of the neural network.
We can take advantage of the perceptron neural network for classi�cation of m input vectors arranged
to a matrix. Let

y�i = f (xi1; : : : ; xin; w0; : : : ; wn) ; for i = 1; : : : ;m;

where
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and y�i is the required ith input vector response. Then the sum of nonlinear least squares LSQ is
expressed by the formula
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In our case, we have a neural network with 35 input neurons accordant with components of features
vector from extended feature space and ten output neurons accordant with particular object types
(classes). We put to the input matrix 	 with m rows corresponding to all objects, and n = 35 columns
corresponding to vector ~ components.

7 Experimental part

7.1 Constrained least squares

Statement of the problem to resolve
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R = const.

A special Matlab function was created for resolving this issue. It provides Levenberg-Marquardt
method for �nding weights while the above condition is required. The algorithm was tested with
parameters p = 2; R = 40. On training data there was only one mistake, no mistake on testing data
occurred.

7.2 Minimization of p-norm with nonlinear constraint

Statement of the problem to resolve
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The standard Matlab tool fmincon function and some additional functions were used for resolving
this task. Additional functions provide the p-norm and LSQ computation. The algorithm was tested
with parameters p = 2; LSQ� = 10. Three mistakes on the training data occurred, no mistake on
the testing data was found.



7.3 Minimization of p-norm with linear constraint

Statement of the problem to resolve

jj~wjjp = min

on condition that �����tanh
 

nX
k=0

wkxik

!
� y�i

����� � Æ;

Æ = const.

Constraint linearization provides �����tanh
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Otherwise the adequate constraint is eliminated.
A new function for linearization process was created and standard matlab tool fmincon was used

for optimization with linear constraints. The algorithm was tested with parameters p = 2; Æ = 0:1 No
mistake on the trainig and the testing data occurred.

7.4 Classi�er comparison

Three previous approaches were compared on real pattern set. Several quality measures were used for
the comparison:

Ep � average mean value of positive patterns

Sp � average standard deviation of positive patterns

En � average mean value of negative patterns

Sn � average standard deviation of negative patterns

TRSe � number of mistakes in training set

TSSe � number of mistakes in testing set.

The numeric results are collected in Tab. 1.



Classi�er Ep Sp En Sn TRSe TSSe

Constrained least squares 0.89 0.06 � 0.98 0.05 1 0
Minimization of p-norm with nonlinear constraint 0.43 0.11 � 0.87 0.06 3 0
Minimization of p-norm with linear constraint 0.96 0.01 � 0.96 0.01 0 0

Table 1: Classi�er comparison

8 Conclusion

The numeric experiments prove the possibility of using perceptron neural network for classifying binary
objects transformed by translation, scaling, and rotation. For object description seven features based
on moments were used, whereas projection of all extended 35th dimensional vectors to the plain by PCA
proved their separibility. The adjustment of feature space was made by the process of standardization.
Vectors from the extended feature space were used as input for perceptron. All methods are acceptable,
but the best results were achieved using minimization of p-norm with a linear constraint. Classi�ers
are not noise resistant. Already a small measure of noise is of the cardinal importance for classi�cation.
A possible improvement is given by using the median �lter, however, it is not included in this work.
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