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Since the 8(’, some 2-D problems have been described in connection with the polynomial
approach. The 2-D area stands outside the mainstream investigation, whereas the area of 1-D
problems has been worked up as far as tools like Polynomial-Toolbox for Matlab, the first
serviceable set of functions for practical work with polynomials.

Now the first small step resulted in a package of elementary algebraical operations with 2-D
polynomial matrices called shortly 2-D Toolbox. The toolbox allow to work with 2-D polynomial
matrices in the form of classical polynomial matrices, spectra of polynomial matrices and two sided
polynomial matrices. Obviously each form is supported with the whole set of algebraical operations,
constructors and converters. Especially the spectra approach offers often result many times faster as
via classical way.

THE EMBEDDING AND RESOURCES

The 2-D toolbox use one of the most enlarged CAD applications for engineers - Matlab as basic
platform and interface. Further is used the Polynomial Toolbox 3.0 .

¢ » Polynomial Toolbox ver. 3.x

» MATLAB 6.x

The advantages of both platforms used for the 2-D Toolbox are:

Matlab 6.x - object management
- scalar matrix operations

- built-in FFT
Polynomial Toolbox for Matlab - data structures

- handling of numerical accuracy

2-D Toolbox - own objects
- 2-D polynomial algebra
- 2-D spectra algebra



IMPLEMENTATION OF 2-D TOOLBOX

The data structures have been chosen as close as possible to the 1-D polynomial data structures.
Instead of variables like g, and g, we have choosen variables x and y —see (1) .
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Figure 1: 2-D polynomial matrix

As introduced above, 2-D Toolbox contain two separate sets of algebraical functions (methods).
One for the 2-D algebra via polynomial coefficients and the second one for the same algebra but via
spectra. These require two different Matlab-objects. For comparing the data structures see Tab 1.
There are obviously converters between each other.

Tab 1: Data structure table — Dual description of 2-D polynomials.

“TIME & “SPECTRA*
Structure of class Structure of class
POL2 POL2SP
Polynomial degrees in “TTME*
Xd Xd
[dx,dy]
Matrix size
X.s X.s
[r,c]
, Matrix of polynomial coefficients
X.c X.c
[r, c, xn, yn|
Vector of used variables N
Xv X
default ['x,y’]
X.u Users info Xau
X.version Version number X.version
- Number of used spectra points Xn
- 0/1 — imag/real indicator X.k




Example: matrix in polynomial coefficients 4x1 with degrees [2,1] - appearance of the user
mterface

>> C=pol2(Aa)

2-D polynomial matrix: 4-by-1
deg(x)=2, deg(y)=1

C =

(31-11i) + (-8+32i)x + (37+16i)y + (34-1i)x"2 + (45+21i)x*y + (-31+19i)x"2*y
(11+43i) + (-12-12i)x + (27+10i)y + (-5+4i)x*2 + (14+11li)x*y + (-1+39i)x"2*y
(20+19i) + (-33+25i)x + (-6+19i)y + (46-4i)x"2 - 25x*y + (-9+6i)x"2*y

(-41-11i) + (33-9i)x + (12+9i)y + (-35-44i)x"2 + (-15-22i)x*y + (-4+3i)x"2*y

DESCRIPTION OF 2-D POLYNOMIALS

Note: For 2-D polynomials, roots are not scalars but still 1-D polynomials (one parameter
curves). Properties of such pole-curves are matter of ongoing investigations. Therefore, this
description way, often used for 1-D polynomials, can not been used 1 this line.

There are two classical ways to describe a ordinary 2-D polynomial
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evaluated for points s, =[$,8;,55,8;...Sy,_¢ | substituted for vatiable x and

s, = [30’31'32'33'”3"‘3’—1} substituted for variable y.

Special properties of such points are adduced below.

It 1s depend by the situation with one description form is proper to be used. User-readable 1s just
the first description mode via matrix A supported by a complex method for user-friendly displaying
of variables (see example below). A similar method is available for data entry. Interpretation of
spectra points, especially for 2-D spectra, is not a common ability. Nevertheless, it is also possible to



show and edit the spectra of 2-D polynomials. the problem is the convertibility between this
descriptions. Numerical algorithms are the core of all toolboxes promising a faster computation.
Our way to get interpolated values is to choose points s, ands, as so-called Fourier-points and use

the very fast build-in FFT dimension by dimension (for more details see [1] . Results of such
interpolations are called spectra. Although without physically interpretation in this case it is now
possible to apply the whole knowledge about operations with the origin and image in this
transformation.

MULTIPLICATION OF 2-D POLYNOMIALS

The elementary operation which has to be inherent to all algebraical toolboxes 1s multiplication.
Functions like determinant and power use internal this function. So that multiplication 1s definitely
the most important function. There are some numerical algorithms to compute the multiplication.

VIA CONVOLUTION

A way to compute the multiplication 1s to follow the definition of multiplication and realize this
one 1-by-1. It results in a convolution.

Consider the multiplication: Z(X’y) = P(X’y)R(X’y)
N, ~1N, -1
Zj =Pk Ofiy = z z Py wli-vk-w > “4)
w=0

Figure 2: Computing the element z 1 of one 2-D polynomial via 2-ID convolution

It 1s obviously that such a computing element-by-element and polynomial-by-polynomial realized
via program cycles can not provide fast, satisfying results.

A much faster way is to avoid slow cycles and prepare the sub-matrices with coefficients into so-
called Sylvester matrix. That is the usual way for polynomial matrix multiplication today.



VIA SYLVESTER MATRIX
This algorithm of the 2 generation prepare the data in strips column-by-column P, R and need

just one multiplication to compute the multiplication Z. Such pseudo-result has to bee reshaped
following explicit knowledge about result degree etc. into final result.
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The disadvantage of this way 1s the redundancy of data which cause useless operation burden.



Via spectra

Today, the most elegant way to compute a polynomial matrix product. The computing bulk 1s
hidden 1 the well-implemented FFT. The operation outside the FFT 1s than just the element-by-
element multiplication realized via so-called doz syntax Z=P.*R with spectra matrices. That is the
corresponding operations to the convolution with polynomial coefficient matrices.
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Figure 3: Computing the element z; via spectra points

Just the both degrees of the result will be computed at first to reserve enough spectra points for
correct image-origin correspondence.

OPERATION BURDEN
Operation burden by computing of 2™ power of a 2-D polynomial matrix with size r x r and

degrees d=dx=dy.

computing time [s]
Ny
n bl ®
computing time [s]

%

—~

0
degree dx,dy

Figure 4: Time burden via spectra - measuretr Figure 5: Time burden via polynomial coefficients
. . . 2 . . .
- via polynomial coefficient we need Q =r° (2d3 - d) multiplications
- via spectra we need just Q =r° (4d)2 multiplications

Depictured tesults computed on PIV / 2,6GHz / 512MB RAM / Win2k / Matlab 6.5



Tab 2: Rate of computing time via polynomial coefficients and spectra ( teoefricients / tspectra )

Matrix size ' xr
3(4|5]|6 7 8 9 10 11 12 13 14 15 16 17 18 19 | 20

Degrees dx,dy
=
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CONCLUSION

As presented, spectra methods offer a very fast alternative to the common way of polynomial
matrix handling. Especially 2-D polynomials represent a hopeful area for this approach. Further
topics like non-explicit equation, well prepared under 1-D, are the mater of ongoing mnvestigation.
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