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INTRODUCTION

In this work, we present an innovative technique for
trajectory tracking of Takagi-Sugeno (TS) fuzzy
models, besides the well-known scheme of Parallel
Distributed Compensation (PDC). Among results on
stabilization, input-output constraints and decay-
rate specification, trajectory tracking has remained
as a relatively unexplored topic in this field. In this
work we not only established a new way to achieve
trajectory tracking, but also we show simulation
results for a two-link subactuated robotic
manipulator.

TS FUZZY SYSTEMS

We start by defining the TS fuzzy model on which
this work is based. Given a system
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its TS fuzzy model is defined as follows:
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where n

ℜ∈x  is the vector approximating 
s

x ,

m

ℜ∈z  is the premise vector, the pair { }
ii

BA ,

correspond to the i-th linearization of the system (1)

and ijV  is the i,j-th membership function.

TRAJECTORY TRACKING

In order to perform trajectory tracking, we start by
defining a linear system which generates the desired

trajectory and is supposed to be of the same
dimension of the TS fuzzy model (see [2]), i.e.:
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Now, our goal is to find a control law to guarantee

that 0e =
∞→t

lim , where the 
d

xxe −=  is the tracking

error vector. Taking its derivative, we have:
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Notice that 0e =
∞→t

lim  if ee F=
&

 where F is a stable

matrix; so we can derive the desired control law just
by solving u from the following equation:
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where ( ) TT
DDDD

1−
⊥
=  is the Moore-Penrose

pseudo-inverse of matrix D. Note that u is a

nonlinear control law.

SIMULATION RESULTS

We have considered a two-link subactuated robotic

manipulator (see [3]), whose equations have been

slightly modified in order to measure the involved

angles according to Figure 1 (i.e., equilibrium point

has been modified), while sign function has been

approximated by a sigmoid, this is:
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where:
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Figure 1: The PENDUBOT

The TS fuzzy model of the plant has been designed

according to the equation (1), where [ ]
31

xx=z ,

i.e., the number of premise variables is 2=p . We

use 4 rules ( 4=r ), covering the following ranges:

[ ]4/,4/
1

ππ−∈x  and [ ]3.0,3.0
3

−∈x  (the states

2
x  and 

4
x  are supposed to lie in complementary

regions, see Fig. 2).

Figure 2: Membership functions

We have chosen a sinusoidal trajectory for 
1
x ,

which means that the whole system is supposed to

oscillate around the unstable equilibrium point

0
21
== xx . To achieve this, we choose:
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and 3)(Re: −=FF λ . Simulation results are

showed below. In Fig. 4 we can see the reference

signal in bold line and system angle x1 in dashed

line. In Fig. 5 the control signal is displayed. We

can see that reference signal tracking is succesfully

achieved with a reasonable control signal.

Figure 4: Trajectory tracking of angle x1

Figure 5: Control signal

CONCLUSION

PDC fuzzy control can solve difficult control

problems with a suitable combination of accurancy

and simplicity. Without losing this advantages, our
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approach achieve trajectory tracking of complex

systems with a suitable modification of the PDC

control law.
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