
INTERVAL-SET ANALYSIS TOOLBOX APPLICATIONS for ESTIMATION and

IDENTIFICATION PROBLEMS

Yarema Zyelyk, Mykhailo Lychak

Space Research Institute of National Academy of Sciences and National Space Agency
(SRI NAS&NSA) of Ukraine

40 Academician Glushkov ave. 03680, Kyiv, Ukraine. Phone: + 380 44 2661291, Fax: + 380
44 2664124, E-mail: adapt@space.is.kiev.ua

Computer Technology, Its Theoretical Foundations and Relation to New Present-

Day Directions in Mathematics
The Interval-Set Analysis Toolbox (in a multidimensional linear space) is a form of

implementation of the computer technology that is under its development at SRI NAS&NSA
of Ukraine.

This computer technology is concerned with the new directions in mathematics:
Interval Computations and Interval Analysis (http://www.cs.utep.edu/interval-
comp/index.html)) [1,2], Set-Valued Analysis (http://www.kluweronline.com/issn/0927-
6947) [3], Set-Theoretic Analysis (http://www.math.wvu.edu/~kcies/STA/STA.html)) [4].

The characteristic feature of the above-mentioned directions consists in the following:
an investigation object here is not a concrete point, line or surface but a general-type set in a
space. When problems are stated and solved, it is assumed that an initial information is
specified as sets (intervals) and that a final computation algorithm implementation result is
also a set. The approaches, developed within these directions, are widely used for data
processing or estimation problems and when complicated systems are controlled. All this is
done under non-stochastically stated uncertainty conditions. These problems emerge in many
practical applications.

20 years already have passed from the date when the scientists of SRI NAS&NSA of
Ukraine started developing the theoretic foundations of the interval-set analysis that find their
application for control systems on the basis of set-theoretic uncertainty models. The set-
theoretic approach implementation relies in this case on the following key assumption: a
control plant (CP) parameter vector, a system state vector, uncontrollable disturbance and
measurement error vectors know some a priori estimates that are represented as sets in their
respective spaces. Such an a priori information is applied when adaptive control algorithms
are synthesized. Set-theoretic identification processes run in these algorithms simultaneously
with control processes, and obtained a posteriori parameter estimates are used when
forthcoming controlling effects are calculated. The most important previous results are
generalized in [5].

The further improvement in application of the set-theoretic approach to control theory
problem solution is seen when the notion of an uncertain process is introduced [6] (in the later
publications it is referred to as a chaotic process). This notion is based not only on the
requirement that non-stochastic process values are to be limited at every time moment, but
additional combined limitations are to be taken into account when they are imposed on these
values at different time moments and form some set in a process phase space. If such
combined limitations are used, it becomes possible to deal with some more rich and adequate
information about an uncertain process. Yielded set-interval estimates for a state of a process
itself and parameter estimates under identification are not so rough than in the case with
simple process value limitation at every moment of time. The specific L-type is stressed in [6]
for uncertain processes. The above-mentioned set-theoretic estimate in a process phase space
is a polyhedron for combined linear limitations. The same estimate can be obtained as an
uncertain process implementation processing result. When uncontrollable disturbances and
observation errors act on a CP and are represented by the aforementioned model, it becomes
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possible to state and solve the parameter identification and CP state estimation [7] problem in
a new way on the basis of the interval-set analysis.

Within the framework of the further development of the fundamental investigations to
the advanced information technology stage technologies, the researchers of SRI

NASU&NSAU started creating the new Interval-Set Analysis Toolbox in MATLAB. The
Toolbox relies on the totality of the authors’ MATLAB-based functions elaborated during the

work on the project when it was executed and have got the grant of the Science and
Technology Center in Ukraine (STCU) (http://www.stcu.kiev.ua) established by Ukraine,

USA, Canada and European Union.
The initial version of this Toolbox was represented at HUMUSOFT s.r.o. Company

(Prague, Czech Republic) and it was read at MATLAB 2001 Conference (Prague,
11.10.2001) (http://www.humusoft.cz/matlab01) [8]. As a result, the recommendations were

obtained concerning the inclusion of the developed Toolbox into MATLAB Connections
Directory, i.e. the worldwide collection of the commercial Toolboxes designed by the senior

staff in different knowledge areas.
At present, the Interval-Set Analysis Toolbox is registered at The MathWorks, Inc. as

the MATLAB Pre-Product Application within the framework of MATLAB Connection
Program. The anticipated term for the commercial product availability is 2003. The Toolbox

now keeps on being improved up to the commercial product, and the illustrating examples of
its application in control systems are elaborated, in particular, in order to solve set-theoretic

identification and filtration problems.
Some cases of how to apply Interval-Set Analysis Toolbox for the identification

problem solution were already discussed in [9]. The present paper considers this matter
further on.

The current Interval-Set Analysis Toolbox version functions and their categories and
purposes are discussed below. The present Toolbox version is already essentially revised and

reinforced in comparison with the version in [8].

Interval-Set Toolbox Function Categories and Its Purposes
The situation for today is that the initial Toolbox version contains more than 40

MATLAB-based functions. They mean the general solution within some linear inequality
system set and the interval-set solution to a linear equation system with an interval uncertainty

in a system matrix and in its right-side vector. According to the purpose, one may try to
divide the main Interval-Set Analysis Toolbox functions into the following categories.

INITIAL Category (Table 1). This category includes different initialization functions
in a finite-dimensional space of such sets as a hypercube, a hyperparallelepiped, a convex

polyhedron, a half-space bounded by a hyperplane. A hypercube and a convex polyhedron are
specified by the introduced special-purpose vertex and face matrices. They are described in

such a way that is useful when one formalizes the procedure in accordance with which it is
possible to find an intersection of a convex polyhedron and a hyperplane, while this

intersection is the basis if a linear inequality system is solved in an interval-set manner. A
hyperparallelepiped is specified by coordinates of a centre and by modules of admissible

deviations of coordinates from a center. A hyperplane is specified by a direction cosine vector

and by a scalar. The linear inequality system is converted into BCX ≤ , where C is a

specified matrix and B  is a vector of respective dimensionalities.

INTERPOLYTOP Category (Table 2). It contains the functions with the help of which
a hyperparallelepiped can be constructed. This hyperparallelepiped covers a set that is

generated by initial system inequalities. The INTERPOLYTOP Category contains also the
functions the purpose of which is to find an intersection of a priori specified convex

polyhedron and a half-space and to construct a convex polyhedron. This procedure is applied
in order to perform further multi-step clarification of a set-interval inequality system solution.

An initial guaranteed interval estimation of a solution is a hyperparallelepiped.
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Table 1. INITIAL Category. Set Initialization Functions in Finite-Dimensional Linear Space

INITIAL category

vcub Constructing a unit hypercube vertex matrix

permsun Generating an array of only unique permutations of specified vector
elements

Vcub_bit Constructing a unit hypercube vertex matrix

gparal Forming a hyperparallelepiped face matrix

V_G_CUB_FILE Generating vertex and face matrices for a unit hypercube and writing

them into the files

V_G_read_file Reading vertex and face matrices for a unit hypercube from a files

V_G_disp_file Displaying vertex or face matricesf faces of a unit hypercube

BOUND_PARAL Inputting hyperparallelepiped boundaries and writing them into a file

vert_paral Forming a vertex matrix for a hyperparallelepiped

Ineq_paral Specifying hyperparallelepiped by a linear inequality system

Hyperplane Generating a hyperplane

GENER_INEQ Generating an linear inequalities system

Table 2. INTERPOLYTOP Category. Functions Constructing an Intersection of a Convex
Polyhedron with a Half-Space

INTERPOLYTOP – category

inter_polyhedron Finding an intersection of a priori uncertainty polyhedron with a
hyperplane

Fifunc1 Function used to establish belonging of a selected point to a
halfspace

ind_G_eq_1 Establishing face matrix element indices that are equal to one

Adjac_ind Finding numbers of polyhedron vertices adjacent to a selected
vertex

New_vertices Determination of new vertex coordinates and adequate conversion
of  vertex and face matrices

New_vert Finding new vertex coordinates on the basis  of considered current
vertex and cut-off vertex

Cutoff_vertices Forming an array of numbers for a priori polyhedron vertices, cut-
off by a hyperplane

Remove_Vcept_next Removing an index of a current cut-off vertex, passage to a next cut-
off vertex

Add_ineq_nul_line Forming an a posteriori linear inequality system and removing null-
lines from a polyhedron face matrix

Ineq_inter Finding an initial interval estimate for linear inequality system set

solution

INEQUALITIES Category. It contains the following functions: to obtain a guaranteed
interval estimate for a set solution to a linear inequality system; an equivalent conversion of

an arbitrary inequality system to an inequality system in the first space orthante in order to
obtain a guaranteed estimate of its solution; inverse conversion of a found set system solution

in the first orthante into an initial finite-dimensional space.
EQUATIONS Category. It contains the functions aimed at initialization of a linear

equation system with an interval uncertainty in a system matrix and in a right system side
vector. The same category contains also the functions of reduction of such an equation system

to a corresponding inequality system in each space orthante. The interval-set solutions to such
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inequality system can be obtained with the help of the aforesaid functions that belong to the
INITIAL and INTERPOLYTOP directories.

CP Identification under Chaotic Disturbances. Problem Statement. Method

Essence

The paper considers the control systems the mathematical model of which can be

represented by the m-th order nonlinear differential equation
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is an m -dimensional state vector; 
n

x  is a scalar plant output; 
n

U  is an r -dimensional control

vector; L  is an s -dimensional vector of unknown constant CP parameters; ϕ  is a specified

scalar function bounded on any limited set of its argument values; 
n
f  is an external

uncontrollable disturbance delivered to a CP output.

It is assumed that a disturbance ( )...,2,1=nf
n

 is a stationary L-type chaotic

process that is defined in accordance with the following definitions given in [6].

Definition 1. A stationary chaotic process with some connection interval [ ]1, −+ Snn

( 0>S is an integer) in a discrete time n is such a limited process ( )...,2,1=nf
n

, for which

values of a state vector
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belong to some bounded set 
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F  in a space S
E , i.e.
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∀∈F . (4)

Definition 2. A stationary chaotic L-type process is such a chaotic process
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, for which a set 
S
F  (4) in a space S

E is specified by the restrictions
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where M is an observation width in a discrete time n; ( ) ( )NpNp ff 21
,  are specified

functions.

A scalar observation 
n

y  for a CP output value 
n

x  is performed directly with an

additive error 
n

z :

nnn
zxy += , (6)

and 
n

z  is the stationary chaotic process that satisfies inequalities similar to inequalities (5)

with specified functions ( )Np kz  instead of ( ) ( )2,1=kNp kf .

Two-sided inequalities (5), that are linear with respect to 
n

f  and similar to 
n

z , specify

some sets F  and Z  in respective spaces S
E . It is assumed that there are some initial

estimates in the form of the sets s

E⊂
0

L  and m

E⊂
0

X . Therefore, an a priori estimation

information is specified by the relations

0
L∈L ;   

0
X∈X ;   F∈

n
f ;   Z∈

n
z ;   ( )Mn ,1= . (7)

The method used for CP identification on the interval-set analysis basis is as follows.

When proceeding from the results of the observations that satisfy expression (6), the
sequence of set-theoretic parameter vector estimates

( )1,1;,1,
1

+−==⊂∈
−

NMnMNL
nnn

LLL . (8)

is made up on the trajectories of motion of system (1)-(2) under unknown values of controls

n
U  and in accordance with relations (7).
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To describe the procedure, used to obtain the set-theoretic estimate 
n

L for a parameter

vector L at an n-th step, the differential general-type set-evolution equation
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NMnMN
nnn

LLL , (9)

may be used, in which 
n

L  is an a posteriori set-theoretic estimate obtained according to

measurement result processing data at an n-th step.
In general, the identification of this type is the complicated problem because it needs

solution to two systems of inequalities in the set terms. These inequalities comprise an
introduced desired parameter vector and an unknown system state vector (including a vector

as a whole and its separate components).
For the sake of simplicity, the paper considers further on the static CP class, the

characteristic feature of which is the absence of the argument 
n

X  in the function ϕ  of

expression (1).

Interval-Set Identification of a Static Linear CP under Stationary Chaotic

Disturbances

The equation for a mathematical model of a static CP is
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An inequality system, from which it is possible to obtain a set-theoretic parameter

vector L estimate, follows from the joint consideration of observation equation (6) under

Nn ,1= , from inequality system (5) for ( )Mnf
n

,1=  and from a similar inequality system

for measurement errors ( )MnZ
n

,1= . In expression (6), substitute the expressions for 
n

x

according to equation (10), change the indices ( 2;11 −+→−+→+ inninn ) and perform

the corresponding averagings in the left and right sides of the obtained equations. Then, in

order to derive the final inequality system for estimation of L, the mentioned disturbance
inequality systems are used.

Therefore, the following statement is true.

Statement. A set-theoretic estimate 
M

Lˆ  for a parameter vector L  of static CP (10),

defined on the basis of measurement results M according to expression (6) in the presence of

known values of controls 
n

U , is found when sets in a space 
s

E of parameters, specified by the

inequalities
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For a static parameter-linear CP, the function ( )nLU
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,,ϕ  in expression (10) takes the

form
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For a parameter-linear CP, the set-theoretic estimate 
M

Lˆ  meets the system of the

following inequalities that make up a polyhedron:
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If an initial set-theoretic estimate 
0

L  for a parameter vector L  is a convex

polyhedron, the estimate 
M

Lˆ  is also a convex polyhedron.

In the case when a CP is linear with respect to parameters and relative to a control
vector (expression (10)), the following equation is derived for its mathematical model:
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For a CP of expression (14), system (13) contains M groups of two-sided inequalities.

There are ( )1,1 +−= NMn  inequalities in each N-th group. According to expression (14),

system (13) can be unfolded as follows:
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System (13) is now written in the form of expressions (15), and it is seen that both of

them contain ( ) 2/1 MM +  two-sided inequalities, and the s-dimensional vector L is present

in them.

For the computer-aided identification process modeling, system (15) is transformed to
the equivalent one-sided inequality system, and the number of the inequalities is doubled:
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( ).,1;1,1 MNNMn =+−=

The right-side matrix and left-side vector dimensionalities in system (16) follow from
two-sided inequality system (15), while system (15) is equivalent to system (16). System (16)

includes ( )MM 1+  inequalities.
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Computer Modeling of a Static CP under Different Chaotic Disturbance Classes

Various scalar chaotic disturbance classes 
n

f  (random; white, brown, pink noise;

aviation noise; Lorenz attractor) were estimated, and the functions )(
1
Np  and )(

2
Np  with

their majorants were estimated with respect to each class. The disturbance time series data

were recorded into the arrays of up to 96000 elements.
The time disturbance series values are centred and standardized. Then, for each

disturbance class, the independent selections are chosen from the standardized data array (1-
96000 elements with the period of 1500 elements), and the length of the selections is 1000

elements with the forthcoming skip of 500 elements at each period. Therefore, it is possible to
derive an ensemble of 64 selections each of which is 1000 elements long. The values of the

functions )(
1
Np

k  and )(
2
Np

k , where 300,1=N , 64,1=k , are calculated on this ensemble and

the boundary values ))((inf)(
1

]64;1[
1 NpNp k

k∈

=  and ))((sup)( 2
]64;1[

2 NpNp k

k∈

= are found. The

functions )(
1
Np  and )(

2
Np  are majorated by monotone increasing and monotone decreasing

curves that pass, respectively, through local minima for )(
1
Np and through local maxima for

)(
2
Np . These overgraphs are plotted according to the following algorithm.

For the function )(
2
Np , the majorant )(

2
Np

m
 must monotonously decrease.

Therefore, if )()1(
22
npnp ≤+ , then these values are stored in the )(

2
Np

m
 majorant value

array. Otherwise, there is )()1(
22
npnp ≥+ , and one must go so many s steps back in the array

of the )(
2
Np function value array that the decreasing condition )()1(

22
snpnp −≤+  is met.

The points )(
2

snp −  and )1(
2

+np  are connected by the straight line. In the band that has the

width of ( )[ ]nsn ;1+− , the values of the overgraph for )(
2
Np  are calculated as the

corresponding ordinates on this line. When the lower overgraph for )(
1

Np
m

 is plotted for the

function )(
1
Np , everything is performed by analogy.

Figure 1 depicts the process when a part of the upper overgraph for )(
2

Np
m

is plotted

for the white noise disturbance. Figure 2 shows the graphs of the majorants )(
1

Np
m

 and

)(
2

Np
m

 of )(
1
Np  and )(

2
Np  for the white noise. The graphs of the majorants )(

1
Np

m
 and

)(
2

Np
m

 for the aviation noise (a noise in the AN-70 airplane cockpit) and the Lorenz

attractor disturbances are given, respectively, in Figures 3 and 4.

When linear inequality system is solved in the set-based way, then the values of the

majorants )(
1

Np
m

 and )(
2

Np
m

 are taken instead of the values of the functions )(
1
Np  and

)(
2
Np .

When a CP of expression (14) is modeled in a computer-aided manner, the real value

L
~

 of an estimated parameter vector L is chosen as one of the uniformly distributed random

vector values, and each vector element is positive and satisfies a certain two-sided inequality.

For instance, ( )sil
i

,16.39.0 =≤≤  is proposed, and the real parameter vector value L
~

 is

[ ]717.1742.2422.1
~

=

T
L . (17)

under 3=s .

The discrete time control vector series for 100 observation is derived by means of the

function that generates uniformly distributed random elements of a (100xs)-dimensional
array, where s is a vector dimension. Proceeding from the peak U-array element values and

from the value of L
~

, the scale of the useful component ( )100,1
~

=nLU
T

n
 for a CP output

process 
1+n

x  of expression (14) under 0
1
=

+n
f  is estimated.
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If a CP is modeled, the time series of the aforesaid chaotic disturbance classes are

generated with the scale that is usually equal to ¼ of the one for LU
T

n

~

. However, when the

abilities of the proposed identification method were investigated with the special purpose
provided that a disturbance level is higher than a useful component level, the “disturbance /

signal” relation was taken as the one equal to 1.5. In the latter case, the interval-set
identification process produced the set-theoretic parameter estimations that were, naturally,

broader than in the case with small disturbances. But, if an interval estimate is derived in
accordance with a found set-theoretic estimation, then an interval estimate centre

approximated a real parameter vector value in as good way as it was seen under small
disturbances.

The time series of the output CP process 
1+n

x  are calculated on the basis of expression

(14) as the sum of the values of LU
T

n

~

 and of the disturbances 
1+n

f .

Implementing the Algorithm Used for Set-Interval Identification of a Linear

Static CP. Analysis of the Results
The interval-set identification procedure is implemented for the computer-modeled

static linear CP in the presence of different chaotic disturbance classes. The solution to the
identification problem is reduced to derivation of linear inequality system (15)-(16) pursuant

to the CP output observation data under specified control values and estimated disturbance
characteristics. The same solution is also reduced to the solution to the system with the use of

the Interval-Set Analysis Toolbox functions.
When system (16) is solved in the interval-set way, the important point here is the

derived initial guaranteed solution estimate. This aspect needs separate examination and
consideration in some other publication. The present paper discusses the algorithms with the

help of which it is possible to estimate an initial solution approximation, and these algorithms
are dealt here with only schematically.

If there are small space dimensionalities (3-5), then it is possible to use the modified
direct steps of Gaussian method in most cases together with a sequential re-numeration of

variables. When this action is performed, then guaranteed interval estimates are obtained for
all the variables. The set for an initial inequality system solution is a hyperparallelepiped.

If there are arbitrary space dimensionalities, the other method can be used and its basis
is as follows: an initial two-sided inequality system is true in the whole space, reduce it by

way of changing of variables to the first space orthant. All the new variables are non-negative
in the first orthant. First of all, it is possible to obtain a guaranteed interval estimate as a

hyperparallelepiped for a portion of new system variables, a number of which is equal to a
space dimensionality. Choose these variables, and this choice defines a non-degenerated

matrix of transition from a space of old variables into a space of new ones. Remove
inequalities in accordance with which a guaranteed estimate is found, and a remaining initial

inequality system part is transformed with the use of the matrix of transition into a new space
of variables. A set-theoretic system solution is further on sought for in a space of new

variables. A true solution, found as a polyhedron, is transformed into a space of initial
variables.

An initial guaranteed interval estimation is found, and then inequalities of an initial
system (or of its part transformed into a space of new variables) are permuted. After such a

permutation, the first system inequalities become the ones that cut maximum parts in minima
decreasing order off from an initial solution hyperparallelepiped-form estimate. When

implementing the process of sequential intersections of half-spaces (formed by each permuted
inequality) with a polyhedron (remaining after an initial estimate), then there is the essentially

greater number of inequalities that turn out to be not information-carrying. Non-informativity
of a respective inequality is characterized by the fact that a half-space, formed by it, does not
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intersect a remaining polyhedron. Therefore, a real set-theoretic solution to a system can be
found much faster by means of the present permutation procedure.

Then, a set-theoretic solution to system (16)-(15) is found by means of the proposed
identification method as the result of a sequential intersection of half-spaces, that are specified

by each inequality, with an initial hyperparallelepiped-form solution estimate. If all the
possible intersections are found when not information-carrying inequalities are removed, a

real set-theoretic system solution is obtained, and this solution is a set-theoretic estimate for a
parameter vector L of a CP in expression (14) in accordance with the measurement M data.

When a set-based solution is derived, the following methodology is implemented: a
number of polyhedron vertices and faces is limited in a parameter space and dimensionalities

of the respective matrices are lowered. The idea of the methodology is to single out the so
called inequalities with weak information at each group step. An inequality with weak

information is an inequality for which the foremost a priori polyhedron vertex (cut off by a
respective half-space) is located close enough to a sectioning hyperplane (in the sense of a

chosen criterion). Such inequalities may not be considered at a certain stage, although they are
not completely removed, and they will not generate new polyhedron vertices and faces in this

case. The set-theoretic estimation of a solution will be rougher but guaranteed, and the
problems with “damned dimensionalities” will not emerge. A roughed estimate can be

clarified at further steps also with the use of inequalities with a weak information at previous
inequality steps.

Table 3 shows the interval-set results for the modeled linear static CP of expression
(14) in the 3D parameter space under the chaotic disturbances like random (M  [5, 10, 30, 50,

100] measurements), random, aviation noise, Lorenz attractor (100 measurements). The CP
identification results are analyzed below for the random-type disturbances.

Initial Guaranteed Interval Estimate (the random-type disturbance, 100=M ). The

number of the one-sided inequalities in system (16) is 10100_ =ineqN . The obtained initial

guaranteed interval parameter vector estimate is characterized by the parallelepiped center

vector icentr_  and by the vector of admissible coordinate deviations ( ixmod_ ) from a center.

The closeness measure of icentr_  to a real parameter value L
~

 in expression (17) is the

relation 509.0
~

_
~

=− LicentrL , and the measure of deviation of coordinates of points that

belong to an initial guaranteed interval estimate is the relation 182.4
~

mod_ =Lix  (where ⋅

is the Euclidean vector norm). Check the informativity of system (16) with respect to an

initial interval estimate, and 909__ =inoninfN  inequalities turn out to be not with

information.

Set-Theoretic Estimation (the random-type disturbance 100=M ). The time, during

which the true set-theoretic solution to system, (16) is ssolvt 42_ = . The number of the non-

informative inequalities under the set-theoretic estimation is 9156__ =snoninfN . Therefore,

when there are 10100 initial inequalities, it turns out that the number of the information-

carrying ones is only ( ) ( ) 35=+−=+−= 915690910100_____inf_ snoninfNinoninfNineqNN

inequalities. This fact can be explained by the successful choice of an initial interval solution

estimate and by the expedient permutations of inequality order in a transformed system. That
is why the set-based polyhedron-form solution to the system is obtained rapidly enough.

Pursuant to the found set-based solution, the interval estimate is yielded that is constructed as
the result of the projection of a derived polyhedron onto coordinate axes. The interval

estimate is characterized by the parallelepiped center vector scentr_  and by the vector of

admissible deviations of coordinates xmod_s from the center. The measure of closeness of

scentr_  to a real parameter vector value L
~

 in expression (17) is the relation

025.0
~

_
~

=− LscentrL , and the measure for the deviation of the coordinates for the points,
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that belong to the initial guaranteed interval estimate, is the relation 118.0
~

mod_ =Lsx . The

interval-set identifications are compared with the results obtained according to the least-
squares method. The degree of closeness of point solution to the identification problem

according to the least-squares method, i.e. of lsqL , to the real value of L
~

, is characterized by

the relation 119.0
~~
=− LLL lsq .

Table 3. Interval-Set Identification Results

Initial Guaranteed Interval Estimate

M ineqN _ LicentrL
~

_
~
− Lix

~
mod_ inoninfN __ LLL lsq

~~

−

5 30 0.357 3.087 0 0.219

10 110 0.304 7.265 1 0.268

30 930 0.807 5.587 8 0.194

50 2550 0.347 4.606 237 0.039

100 10100 0.509 4.182 909 0.119

Set-Theoretic Estimation

M ineqN _ solvt _  (s) snoninfN __ LscentrL
~

_
~
− Lsx

~
mod_

5 30 1.4 23 0.185 0.614

10 110 2.8 94 0.318 0.301

30 930 7.8 922 0.128 0.300

50 2550 17 2281 0.038 0.161

Random

100 10100 42.5 9156 0.025 0.118

Initial Guaranteed Interval Estimate

M ineqN _ LicentrL
~

_
~
− Lix

~
mod_ inoninfN __ LLL lsq

~~

−

100 10100 3.016 10.97 650 0.057

Set-Theoretic Estimation

M ineqN _ solvt _  (s) snoninfN __ LscentrL
~

_
~
− Lsx

~
mod_

Aviation

noise

100 10100 121,3 9386 0.016 0.831

Initial Guaranteed Interval Estimate

M ineqN _ LicentrL
~

_
~
− Lix

~
mod_ inoninfN __ LLL lsq

~~

−

100 10100 1.606 4.850 2227 0.090

Set-Theoretic Estimation

M ineqN _ solvt _  (s) snoninfN __ LscentrL
~

_
~
− Lsx

~
mod_

Lorenz
attractor

100 10100 64.8 7840 0.050 0.432

Figure 5 depicts the polyhedron-type guaranteed estimate for the parameter set of the

CP from expression (14). The random-type disturbance exerts its influence onto it after
finding of the intersection of only the first inequality of system (16) with the initial

guaranteed interval parameter set estimate. Figure 6 represents the whole polyhedron-form
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guaranteed CP parameter set for the case with the random disturbance. And Figure 7 shows
the whole guaranteed CP parameter set that is in the presence of aviation noise disturbance

and figure 8 depict the whole guaranteed CP parameter set under the Lorenz attractor
disturbance.

The following conclusions follow from the set-interval identification analysis results.
When a number of measurements is large, then, for any disturbance type, an a posteriori

interval solution estimate centre approximates a real parameter vector value in a better way
than an a priori interval estimate centre and than an estimate obtained according to the least-

squares method. When a number of measurements increases, a point solution accuracy
increases when a solution is represented by an a posteriori interval estimate, and an accuracy

of a solution, obtained according to the least-squares method, decreases. An expedient choice
of an initial interval estimate and a change in a system inequality order provide non-

informativity of an essential portion of inequalities, and the result is the accelerated process
during which a guaranteed CP parameter set is obtained.

Conclusion

The developed Interval-Set Analysis Toolbox in MATLAB is reinforced by the new
functions and it is used to solve the problem concerned with modeling of linear static COs

under an influence of chaotic disturbances, as well as the problem concerned with interval-set
identification of these COs. The paper obtains the guaranteed estimates for the characteristics

of some chaotic process classes in the form of the two-side restrictions imposed onto average
process values on different averaging intervals that belong to a specified process connexity

interval. The derived guaranteed estimates are used to generate the system of the inequalities
from which one can obtain a guaranteed CP parameter estimate set in accordance with

measurement data. Under stochastic disturbances, the CP identification problem is resolved
within the framework of the following realistic uncertainty principle: “inaccurate data – not

unique (inaccurate) system”. The identification problem solution is reduced to the interval-set
linear inequality system one. The Toolbox functions help to implement the efficient

algorithms with the use of which an initial guaranteed interval estimate of a parameter set is
obtained and a real guaranteed CP parameter set is found under different-class chaotic

disturbances. The proposed algorithms, used to estimate chaotic process characteristics and to
identify CPs under chaotic disturbances and that are implemented by the Interval-Set Analysis

Toolbox, can find their wide practical application areas in which the authors already have the
theoretical decisions and the MATLAB-based designs. These areas are: digital adaptive and

robust control systems (including real-time systems) under non-stochastic uncertainty
conditions; information measurement and testing systems; experiment scheduling and control

systems; systems used to analyze and foresee a spacecraft motion trajectory; investment
project risk analysis and project efficiency prognostication.
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Fig. 5. A guaranteed CP parameter set estimate at the first

step under the random type disturbance

Fig. 6. The whole guaranteed CP parameter set under the

random type disturbance

Fig. 7. The whole guaranteed CP parameter set under the

aviation noise-type disturbance

Fig. 8. The whole guaranteed CP parameter set under the

Lorenz attractor-type disturbance
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