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Abstract
This report documents the application of some recent linear matrix inequalities (LMIs) - based
methods for design of a robust controller for a laboratory servomechanism. The report is
application-oriented and therefore no theoretical backgroung is developed. Instead, references are
made where references are due and matlab-like style is followed.

1 Introduction

This report documents the application for design of a robust controller for laboratory servomechanism
with function ptopdes.m. The laboratory servomechanism is used for control education at the Department
of Control Egineering CTU in Prague. Students identify and design feedback controllers. A set of new
functions are being included to the new release 3.0 of the Polynomial Toolbox [1]. The new functions
use optimization over linear matrix inequalities (LMIs) to solve various robust control problems [4].

2 System description

Classical DC servomotor with adjustable rotational friction and a set of removable disks bringing about
an uncertainty in the description, namely uncertain rotational friction and uncertain moment of inertia.

Figure 1: Block diagram

The plant input - voltage u 2 [�1; 1][V ] applied to the armature of a DC motor (after amplification
in the multifunction I/O card PCL-812).
The plant output - angular position ' 2 [0; 2�][rad] of the shaft and/or the rotational velocity

![rad=s]. The rotational velocity measured by the tachogenerator is scaled by 1
k!
. Potentiometer measures

the angle of the shaft with ratio 1
60 , such that 0[rad] coresponds to �

1
60 [V ]; �[rad] corresponds to 0[V ]

and 2�[rad] corresponds to 1
60 [V ].



The system parameters

L = 0.75e-3; % armature inductance
R = 6.2; % armature resistance
U0 = 10; % nominal input (armature) voltage

J0 = 30e-6; % nominal moment of inertia
J1 = 75.6e-6; % additional inertia due to the disk #1
J2 = 330.5e-6; % additional inertia due to the disk #1
J3 = 1.387e-3; % additional inertia due to the disk #3

k = 0.032; % motor constant
k_omega = 27.11; % tachogenerator (scaling) constant

B0 = 3e-5; % nominal (rotational) friction
B5 = 0.000042; % additional friction for setting 5 mm
B10 = 0.000195; % additional friction for setting 10 mm
B15 = 0.0004; % additional friction for setting 15 mm
B(1) = B0; B(2) = B0 + B5; B(3) = B0 + B10; B(4) = B0 + B15;

2.1 Linear differential equations

The system is linear, classical DC servo system:

u (t) = Ri (t) + L
di (t)
dt
+ k

d' (t)
dt

J
d2' (t)
dt2

= ki (t)�
�
B0 +B5 (or 10;15)

� d' (t)
dt

Neglecting the electrical circuit response (setting L = 0), we get

J
d2' (t)
dt2

+

�
B0 +B5 (or 10;15) +

k2

R

�
d' (t)
dt

=
k

R
u (t)

2.2 Transfer function - nominal model

From the armature voltage to the angle of the rotor shaft - assuming zero initial conditions, the
transfer function (from u(t) to '(t)) for disk ]2 and (rotational) friction indicator set to 5mm:

J = J0+J2; % system with disk #2
B = B0+B5; % total rotational friction

num3 = k/(L*J)
num3 =

1.1835e+005

den3 = s^3 + (R/L + B/J)*s^2 + (k^2/(L*J)+R*B/(L*J))*s
den3 =

5.4e+003s + 8.3e+003s^2 + s^3

The corresponding simplified model (neglecting the electrical response, L! 0) is

num = k/(R*J), den = s^2 + (B+k^2/R)/J * s
num =

14.3170



den =
0.66s + s^2

Comparing both transient (step, impulse) and frequency (bode) response we conlude that second
order model given by

G = rdf(num,den) %right denominator fraction
G =

14 / 0.66s + s^2

is sufficient in the practical frequency range (< 102 rad:s�1). Moreover, with the sampling period
T = 5ms, the higher frequencies cannot even be measured:
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Figure 2: Step and impuls response model and real servomechanism

From the armature voltage to the angular velocity of the rotor shaft - assuming zero initial con-
ditions, the first-order transfer function (from u(t) to !(t)) for disk ]2 and (rotational) friction
indicator set to 5mm:

numw = num,
denw = ldiv(den,s), %left polynomial matrix division
numw =

14.3170
denw =

0.66 + s

Gw = rdf(numw,denw)
Gw =

14 / 0.66 + s

The simplified mathematical model corresponds to the complete mathematical model and real iden-
tified model. That show the Fig. 3 on the next page.



Bode Diagram
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Figure 3: Comparison of the mathematical model and simplified model and real servomechanism

3 Robust control with Polynomial toolbox with LMI-based me-
thods by Didier Henrion

LMI optimization software packages like SeDuMi [2] in combination with recent achievements in robust
control theory [3] give a control engineer a new powerful tool. One useful instance of this is Matlab
function ptopdes.m written by Didier Henrion. The function requires the Polynomial Toolbox [1].
In this section, we ilustrate the usefulness of this function for design of robust P and PI controller for
(angular) position control.

A - Design of a proporcional controller The nominal proporcional controller is C = Y=X = 1.

x0 = 1; y0 = 1;

There are two vertices of the polytopic family of plants:

den_p = cell(2,1); num_p = cell(2,1);

the model with minimum value of rotational friction B = B0

num_p{1} = num; den_p{1} = den(1);

and the model with maximum value of the rotational friction B = B0 +B15

num_p{2} = num; den_p{2} = den(4);

The first task is to choose the so-called central polynomial. We stabilize the first vertex with a
proportional controller and the closed-loop polynomial becomes

charpol = den_p{1}*x0+num_p{1}*y0
charpol =

14 + 0.54s + s^2

Now, we call the function ptopdes.m with given parameters

[x,y] = ptopdes(den_p,num_p,charpol,[0 1;1 0],’P’)
x =

1
y =

0.7343



Simulation results:
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Figure 4: Control with P conroller

The friction B was changed every 40s from B0 to B0+B15 x0 = 1; y0 = 1;

B - Design of a PI controller The nominal PI controller C(s) = Y(s)/X(s) is given by

x0 = s; y0 = 10*(2.5*s+1)*(0.85*s+1);

Again, the uncertain family of plants is described as a polytope with two vertices. The central
polynomial si found using the PI controller stabilizing the nominal plant:

charpol = den_p{1}*x0+num_p{1}*y0
charpol =

1.4e+002 + 4.8e+002s + 3e+002s^2 + s^3
[x,y] = ptopdes(den_p,num_p,charpol,[0 1;1 0],’PI’)
x =

s
y =

5.8e-008 + 5.7s

Simulation results:
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Figure 5: Control with PI conroller

The friction B was changed every 40s from B0 to B0+B15



C - Design of a PI controller with guaranteed stability margin Assessing the results of simu-
lation with a robust PI controller, is might be reasonable to pose stricter requirements on the
damping of the closed loop system. With ptopdes.m function it can be done via specification of
some other stability domain. The simplest case is that of a shifted stability region D.
The shifted left half-plane guarantees some fixed stability margin, for example

D = fs 2 C : Re s < �0:15g

In the syntax of ptopdes.m function, this region can be fully described using the following matrix

S=[0.3 1; 1 0];

Now, call the function ptopdes.m with the given parameters and options:

[x,y] = ptopdes(den_p,num_p,(s+1)^3,[0.3 1;1 0],’PI’)
x =

s
y =

0.011 + 0.081s

However, the designed controller performs poorly in simulations, because the control signal is small
and the effect of the nonlinearity (dead zone) is not negligible.
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5 Conclusion

We used the simplified mathematical model for all designed controllers. The simplified mathematical
model corresponds with the complete mathematical model and real identified model. That is shown in
Fig. 3. With the function ptopdes.m we can design P, PI and PID controllers. It is not (always) necessary
to stabilize a vertex plant to obtain a central polynomial, very often the simple choice (s+ 1)k with k a
suitable power (fixing the order of the controller) is a good candidate. It is described in [4] how to design
other controllers with next functions that were created by Didier Henrion.
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