
HYBRID GENETIC ALGORITHM AND KNAPSACK PROBLEM IN MATLAB ENVIRONMENT

Radek Matoušek
Institute of Automation and Computer Science

Brno University of Technology

Abstract
This paper discusses applications of specific heuristic methods for solving an optimization problem
known as the 0/1 Knapsack problem (KS). A Hill Climbing algorithm (HC) and a Genetic Algorithm
(GA) was used for design of special heuristic hybrid algorithm denoted as a GA-HC. In GA algorithm
a fuzzy control by FIS was used. The KS problem tested tasks differ in numbers of items and size of
restrictions. A different behavior of heuristic algorithms related to size of KS restriction is shown.
Keywords: Hill Climbing algorithm, Genetic Algorithm, Knapsack problem

1 Introduction
This paper deals with short empirical tests of
specific heuristic algorithms. A Matlab
environment for implementation of these
algorithms was used.

• CW algorithm (greedy strategy)
• HC algorithm (Hill Climbing with h1-

transformation)
• GA algorithm (Genetic Algorithm and

GA-FIS)
• GA-HC algorithm (hybrid of GA and HC

algorithms)

We must note that the heuristics are
algorithms for which we are not able to
guarantee the computation of a correct result in a
reasonable time. Their basic advantages are
simplicity and robustness. Genetic Algorithms
and Hill Climbing are well-known
representatives of heuristics.

The 0/1 Knapsack problem was chosen
as a test problem for these heuristics. The
problem is easy to formulate, yet, the given
version of it belongs to a family of NP-complete
problems. It is an interesting exercise to evaluate
the advantages and disadvantages of constraint
handling techniques on this particular problem
with a single constraint: the conclusions might
be applicable to many constrained combinatorial
optimization problems [1,4]. For this reason we
provide the optimum solutions up to 20 items for
the test cases. A brute force for searching for
optimal KS problem solutions was used. We do
not provide the optimal solutions for more than
20 items for the test cases: we make only some
comparisons between presented heuristic
methods for time complexity reasons of the KS
problem and some restrictions in the MatLab
environment.

2 Test Problem Description
The knapsack problem (KP) is an NP-hard
optimization problem [1]. Input consists of a
number of objects (items) with given weights
and costs. One has a knapsack whose weight
capacity is bounded by positive number b∈ +
(frequently by positive integer b), n items of
weights wi, i=1,2,…n and costs ci for every item
i.

The objective is to maximize the common cost of
objects (the profit) packed into the knapsack
under the constraint that the common weight of
the objects in the knapsack is not above b. Thus,
our instance of the knapsack problem (KP) is as
fallows:

Input: The vectors wi and ci are generated by
uniform random generator, parameter b
reflects different size [%] of restriction
of the KS problem.

(uniform random, uncorrelated)(0,], (0,], i iw n c n∈ ∈
n

i
i=1

...{10%,50%,90%} of wb ∑

b∈ +, wi∈ +, ci∈ +, i=1,2,…n (1)

Solution vector: {0,1}n∈x where

1 if the -th object (item) is accepted
0 otherwisei

i
x = 



 (2)

Goal: To maximalize

1
()

n

i i
i

f c x
=

= ∑x (3)

Constraint:
1

n

i i
i

w x b
=

≤∑ (4)

Table 1 demonstrates complexity of the
KS problem brute force solutions in Matlab
environment. We noted, that cited heuristic
methods reduce memory usage and are suitable
for KS problem with number of items n>20. The
KS problem can be solved by means of classical
mathematical approximate or exact methods e.g.
FPTAS [1], dynamic programming or branch
and bound method [8].

n 2n××××n (array) memory [Bytes] ** time[s]

1 2×1 16 B ≡ 16 B 0
10 1024×10 81920 B ≡ 80 kB 0
20 1048576×20 167772160 B ≡ 160

MB
3.5

21 2097152×21 352321536 B ≡ 336
MB

7.4

22 4194304×22 738197504 B ≡ 704
MB

15.2

23 8388608×23 1543503872 B ≡ 1472
MB

31.9

*Depends on algorithm and computer hardware
 (AMD Athlon XP1800+, 768MB, KT266).
** Environment: Matlab R12, max. memory size for variables:
 ∼250MB, used data type: double (8bytes),
 OS environment: MS Windows 98 SE.
Table 1: The Complexity of the KS problem brute force

solutions in Matlab environment.

3 Formal Description of The Heuristic
Methods
The heuristic algorithms were implemented as
m-function and tested. In all algorithms a binary
string of the length n represents a solution x to
the problem: the i-th item is selected for the
knapsack iff x(i) = 1. The fitness eval(x) of each
string is determined as:

1
() ()

n

i i
i

eval c x pen
=

= −∑x x , (5)

where penalty function pen(x) is zero for each
feasible solution x, i.e., solutions such that

1

n
i ii

w x b
=

≤∑ , and is greater than zero
otherwise.

3.1 CW algorithm
A simple and quick algorithm [1,2] (simple
greedy strategy) destined for KS problem.
Coefficients di = ci/wi are sorted and
corresponding items are put to the knapsack until
they fill it up (4).

3.2 HC algorithm
Hill climbing techniques, such as gradient
descent, use local information about the search
space to find optimum. For unimodal function,
basic HC algorithms easily outperform most

other methods, but for more complicated
functions HC algorithms are apt to get stuck in
local optima. We use a basic hill climbing
algorithm, with following specifications:

• The initial solution vector x (2) is generated
randomly (uniform).

• Next solutions are deterministic and
determined by transformation function h1(x).

• The transformation function h1 produces n
neighbor of kernel vector x [2] with
Hamming distance (6), ρH = 1.

1
(,)

n

H i i
i

a b a bρ
=

= −∑ (6)

• The objective function including penalization
is given by equation (5).

3.3 GA (GA-FIS) algorithm
The concept of genetic algorithm is well known
as well as its advantages and disadvantages
[3,5,6]. Genetic algorithms are heuristic
algorithms whose search methods model some
natural phenomena: Mendelian genetic
inheritance and Darwinian strife for survival.
From the optimization point of view we can
denote GA as a robust optimization method.

An objective function (fitness) including
penalization is given by (5). The population size
of 50 and 200 generations was used. GA
parameters were set by GA-FIS. GA-FIS is
improving GA with self-control mechanism
based on fuzzy inference system (FIS) [4,7].

3.4 GA-HC algorithm
A concept of the hybrid GA-HC algorithm is
based on classical genetic algorithms with
special HC mutation operator. GA represents
global optimization technique and HC is local
search estimator. From this conjunction we get
optimization method with good attributes from
both methods (GA and HC).

Fig. 1: HC, h1 transformation, example for n=8.

Fig. 2 shows the principle of implementation of HC down to the GA individual. The GA optimization
process is a classical (GA or GA-FIS) with selection, crossover and mutation operator. Next, a special
HC mutation operator is applied with probability

pmHC ≈ 0.0
(HC kerne

4 Exper
We used fo

• Inp
• Th

Fig

The U1 and

Fig. 2: The principle of implementation of HC down to the GA individual.
5 on each individual (chromosome). HC mutation is performed by selecting a sub-string
l) of a specified size and using the HC algorithm to it (Fig. 2).

imental Results
llowing in experiments:

uts (1) for given set of n-items and 90%, 50% and 10% size of restriction.
e number of experiments (instances with different n) for a given restriction is 100.

. 3: Comparison of CW, HC, GA and GA-HC methods for different KS restrictions.

 U2 characteristics (7) were designed to compare results of the heuristics:

1

2

number of runs with optimal heuristic search 100 [%]
number of all runs

sum of costs of all solutions found by heuristic 100 [%]
sum of costs of all optimal solutions

U

U

= ×

= ×

 (7)

5 Conclusion
Genetic algorithms and hill climbing
techniques have been applied to a wide variety
of optimization problems. In this paper we
combined the strengths of these two algorithms
into a single GA-HC system that outperforms
both the GA and HC on a given test suite (KS
problem). The performance of a given
heuristics (CW, HC, GA and GA-HC) in
comparison to optimal solution is shown in
Fig. 3 (by means of coefficient U1 and U2). The
coefficient U1 denotes the global
successfulness of the given heuristics and
coefficient U2 denotes practical aspects of
given methods. As one can see the GA-HC
algorithm is the best for all instances of
knapsack problem and for all restrictions of
knapsack size. The change of behavior of
heuristic algorithms in relation to size of
restriction is obvious. The diagrams in Fig.4
clearly show the difference of HC, GA and
GA-HC algorithms to the CW algorithm.
Optimal solution for numbers of items greater
than 20 cannot be found by brute force in
Matlab environment due to memory
limitations, so these diagrams contain only
differences between reported methods and the
CW algorithm.

Presented results show the
performance of used methods for KS problem
of a given size. For analysis of the promising
GA-HC algorithm for KS problem of greater
size (>100 items) a change of strategy will be
needed due to increasing requirements for
system resources, e.g. paralleled or distributed
computations. This will be the objective of
future work.

Acknowledgements
The paper was supported by research designs CEZ:
J22/98: 261100009 “Non-traditional methods for
investigating complex and vague systems”, VZ
MŠMT No: 260000013, 2211406 and by grant from
Grant Agency of the Czech Republic reg. No.
103/01/0675.
Mailto: matousek@uai.fme.vutbr.cz

References
1. Hromkovič, J.: Algorithmic for Hard Problems

(Introduction to Combinatorial Optimization,
Randomization, Approximation and
Heuristics). Spriger-Verlag (2001). ISBN 3-
540-66860-8

2. Matoušek, R.: Hill Climbing and 0/1 KSP. In:
MENDEL 02’ 8th International Conference on
Soft Computing. Brno (2002), p. 325-328,
ISBN 80–214-2135-5

3. Michalewicz, Z.: Genetic Algorithms + Data
Structures = Evolution Programs. Second,
Extended Edition, Springer-Verlag (1994).

4. Matoušek, R., Ošmera, P.: A Fuzzy Setting of
GA Parameters. Proceeding of 7th Zittau Fuzzy
Colloquium (1999), Germany, p.154-160

5. Popela, P., Dvořák, J.: Global optimization and
genetic algorithms. Mendel’96, Brno (1996),
Czech Republic, p. 205-214

6. Bäck, T.: Evolutionary Algorithms in Theory
and Practice. Oxford UP, Oxford
(1996).Matoušek, R., Ošmera, P., Roupec, J.:
GA with Fuzzy Inference System. Proceedings
of the 2000 Congress on Evolutionary
Computation - CEC00, USA 2000, p. 646-652

7. Matoušek, R., Ošmera, P., Roupec, J.: GA with
FIS. Proceedings - Congress on Evolutionary
Computation - CEC00, USA 2000, p. 646-652

8. Klapka, J., Dvořák, J., Popela, P.: Methods of
Operation Research, (in Czech), Vutium Brno
(2001).

Fig. 4: Comparison (mean values) of HC, GA and GA-HC methods for different KS restriction.

