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Abstract 
This paper discusses applications of specific heuristic methods for solving an optimization problem 
known as the 0/1 Knapsack problem (KS). A Hill Climbing algorithm (HC) and a Genetic Algorithm 
(GA) was used for design of special heuristic hybrid algorithm denoted as a GA-HC. In GA algorithm 
a fuzzy control by FIS was used. The KS problem tested tasks differ in numbers of items and size of 
restrictions. A different behavior of heuristic algorithms related to size of KS restriction is shown. 
Keywords: Hill Climbing algorithm, Genetic Algorithm, Knapsack problem  
 
 
1 Introduction 
This paper deals with short empirical tests of 
specific heuristic algorithms. A Matlab 
environment for implementation of these 
algorithms was used. 
 

• CW algorithm (greedy strategy) 
• HC algorithm (Hill Climbing with h1-

transformation) 
• GA algorithm (Genetic Algorithm and 

GA-FIS) 
• GA-HC algorithm (hybrid of GA and HC 

algorithms) 
 

We must note that the heuristics are 
algorithms for which we are not able to 
guarantee the computation of a correct result in a 
reasonable time. Their basic advantages are 
simplicity and robustness. Genetic Algorithms 
and Hill Climbing are well-known 
representatives of heuristics. 

The 0/1 Knapsack problem was chosen 
as a test problem for these heuristics. The 
problem is easy to formulate, yet, the given 
version of it belongs to a family of NP-complete 
problems. It is an interesting exercise to evaluate 
the advantages and disadvantages of constraint 
handling techniques on this particular problem 
with a single constraint: the conclusions might 
be applicable to many constrained combinatorial 
optimization problems [1,4]. For this reason we 
provide the optimum solutions up to 20 items for 
the test cases. A brute force for searching for 
optimal KS problem solutions was used. We do 
not provide the optimal solutions for more than 
20 items for the test cases: we make only some 
comparisons between presented heuristic 
methods for time complexity reasons of the KS 
problem and some restrictions in the MatLab 
environment. 

2 Test Problem Description 
The knapsack problem (KP) is an NP-hard 
optimization problem [1]. Input consists of a 
number of objects (items) with given weights 
and costs. One has a knapsack whose weight 
capacity is bounded by positive number b∈ + 
(frequently by positive integer b), n items of 
weights wi, i=1,2,…n and costs ci for every item 
i. 
 

The objective is to maximize the common cost of 
objects (the profit) packed into the knapsack 
under the constraint that the common weight of 
the objects in the knapsack is not above b. Thus, 
our instance of the knapsack problem (KP) is as 
fallows: 
 

Input: The vectors wi and ci are generated by 
uniform random generator, parameter b 
reflects different size [%] of restriction 
of the KS problem. 
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b∈ +, wi∈ +, ci∈ +, i=1,2,…n  (1) 
 

Solution vector: {0,1}n∈x  where 
 

1   if the -th object (item) is accepted
0 otherwisei
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Table 1 demonstrates complexity of the 
KS problem brute force solutions in Matlab 
environment. We noted, that cited heuristic 
methods reduce memory usage and are suitable 
for KS problem with number of items n>20. The 
KS problem can be solved by means of classical 
mathematical approximate or exact methods e.g. 
FPTAS [1], dynamic programming or branch 
and bound method [8]. 
 

n 2n××××n (array) memory [Bytes] ** time[s] 

1 2×1 16 B ≡  16 B 0 
10 1024×10 81920 B ≡ 80 kB 0 
20 1048576×20 167772160 B ≡ 160 

MB 
3.5 

21 2097152×21 352321536 B ≡ 336 
MB 

7.4 

22 4194304×22 738197504 B ≡ 704 
MB 

15.2 

23 8388608×23 1543503872 B ≡ 1472 
MB 

31.9 

*Depends on algorithm and computer hardware 
     (AMD Athlon XP1800+, 768MB, KT266). 
**  Environment: Matlab R12, max. memory size for variables: 
   ∼250MB,  used data type: double (8bytes), 
     OS environment: MS Windows 98 SE.  
Table 1: The Complexity of the KS problem brute force 

solutions in Matlab environment. 
 
3 Formal Description of The Heuristic 
Methods 
The heuristic algorithms were implemented as 
m-function and tested. In all algorithms a binary 
string of the length n represents a solution x to 
the problem: the i-th item is selected for the 
knapsack iff x(i) = 1. The fitness eval(x) of each 
string is determined as:  
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where penalty function pen(x) is zero for each 
feasible solution x, i.e., solutions such that 
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≤∑ , and is greater than zero 
otherwise. 
 
 
3.1 CW algorithm 
A simple and quick algorithm [1,2] (simple 
greedy strategy) destined for KS problem. 
Coefficients di = ci/wi are sorted and 
corresponding items are put to the knapsack until 
they fill it up (4). 
 
3.2 HC algorithm 
Hill climbing techniques, such as gradient 
descent, use local information about the search 
space to find optimum. For unimodal function, 
basic HC algorithms easily outperform most 

other methods, but for more complicated 
functions HC algorithms are apt to get stuck in 
local optima. We use a basic hill climbing 
algorithm, with following specifications: 

 

• The initial solution vector x (2) is generated 
randomly (uniform). 

• Next solutions are deterministic and 
determined by transformation function h1(x). 

• The transformation function h1 produces n 
neighbor of kernel vector x [2] with 
Hamming distance (6), ρH = 1. 
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• The objective function including penalization 
is given by equation (5). 

 
 
3.3 GA (GA-FIS) algorithm 
The concept of genetic algorithm is well known 
as well as its advantages and disadvantages 
[3,5,6]. Genetic algorithms are heuristic 
algorithms whose search methods model some 
natural phenomena: Mendelian genetic 
inheritance and Darwinian strife for survival. 
From the optimization point of view we can 
denote GA as a robust optimization method.  

An objective function (fitness) including 
penalization is given by (5). The population size 
of 50 and 200 generations was used. GA 
parameters were set by GA-FIS. GA-FIS is 
improving GA with self-control mechanism 
based on fuzzy inference system (FIS) [4,7]. 

 
 

3.4 GA-HC algorithm  
A concept of the hybrid GA-HC algorithm is 
based on classical genetic algorithms with 
special HC mutation operator. GA represents 
global optimization technique and HC is local 
search estimator. From this conjunction we get 
optimization method with good attributes from 
both methods (GA and HC). 

 
 

Fig. 1: HC, h1 transformation, example for n=8. 



Fig. 2 shows the principle of implementation of HC down to the GA individual. The GA optimization 
process is a classical (GA or GA-FIS) with selection, crossover and mutation operator. Next, a special 
HC mutation operator is applied with probability  

pmHC ≈ 0.0
(HC kerne
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Fig. 2: The principle of implementation of HC down to the GA individual. 
5 on each individual (chromosome). HC mutation is performed by selecting a sub-string 
l) of a specified size and using the HC algorithm to it (Fig. 2).  

imental Results 
llowing in experiments: 

uts (1) for given set of n-items and 90%, 50% and 10% size of restriction. 
e number of experiments (instances with different n) for a given restriction is 100. 

 
. 3: Comparison of CW, HC, GA and GA-HC methods for different KS restrictions. 

 
 U2 characteristics (7) were designed to compare results of the heuristics: 

1

2

number of runs with optimal heuristic search 100 [%]
number of all runs

sum of costs of all solutions found by heuristic 100 [%]
sum of costs of all optimal solutions

U

U

= ×

= ×

  (7)



5 Conclusion 
Genetic algorithms and hill climbing 
techniques have been applied to a wide variety 
of optimization problems. In this paper we 
combined the strengths of these two algorithms 
into a single GA-HC system that outperforms 
both the GA and HC on a given test suite (KS 
problem). The performance of a given 
heuristics (CW, HC, GA and GA-HC) in 
comparison to optimal solution is shown in 
Fig. 3 (by means of coefficient U1 and U2). The 
coefficient U1 denotes the global 
successfulness of the given heuristics and 
coefficient U2 denotes practical aspects of 
given methods. As one can see the GA-HC 
algorithm is the best for all instances of 
knapsack problem and for all restrictions of 
knapsack size. The change of behavior of 
heuristic algorithms in relation to size of 
restriction is obvious. The diagrams in Fig.4 
clearly show the difference of HC, GA and 
GA-HC algorithms to the CW algorithm. 
Optimal solution for numbers of items greater 
than 20 cannot be found by brute force in 
Matlab environment due to memory 
limitations, so these diagrams contain only 
differences between reported methods and the 
CW algorithm. 

Presented results show the 
performance of used methods for KS problem 
of a given size. For analysis of the promising 
GA-HC algorithm for KS problem of greater 
size (>100 items) a change of strategy will be 
needed due to increasing requirements for 
system resources, e.g. paralleled or distributed 
computations. This will be the objective of 
future work. 
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