
EXTENSION FOR XILINX SYSTEM GENERATOR – LOGARITHMIC

ARITHMETIC BLOCKSET

Miroslav Líčko1, Bastien Métais
2
, Milan Tichý

1
, Rudolf Matoušek

1

1
Institute of Information Theory and Automation, Czech Republic

2
Ecole Centrale Nantes, France

Abstract: The paper introduces support of floating point (FP) data format for
the Xilinx System Generator (XSG) using logarithmic arithmetic. This type of

arithmetic seems to be one of the promising ways to solve FP sort of DSP
problems in practice. Our 32-bit high-speed logarithmic arithmetic (HLSA)

keeps the accuracy according to IEEE 754 and even speed up some kinds of FP
algorithms. Promising is 19-bit equivalent utilised in this paper. It still offers

reasonable precision for the practical use and has minimal HW requirements.

1 Xilinx System Generator (XSG) and Appropriate Design Flow

XSG enables to design DSP systems for Field Programmable Gate Arrays (FPGAs) using

MATLAB and Simulink. The XSG comprise blockset for bit- and cycle-accurate simulation
and brings the possibility to automatically generate Hardware Descriptive Language (HDL).

The HDL code is generated directly from Simulink block diagrams using blockset from XSG
Library. Generated HDL code can be synthetised and implemented in the FPGA.

Figure 1 Design Flow using the Xilinx System Generator (XSG)

Automatically are generated (follow the Figure 1) not only command batches for FPGA
Synthesis, Logic Simulation and implementation tools (Place and Route), but as well all

necessary files for functional verification (test bench) and timing specification (constraint). In
our design flow we have utilised VHDL but the XSG can deal with Verilog as well.

The automatic adaptation of FPGA technology (code generation) allowed us concentrate
on the implementation problems using mostly MATLAB and Simulink environment. We have

utilised XSG methodology based on Black Boxes to extend the set of functions (blockset) of
the present XSG Library with our logarithmic arithmetic.

2 High Speed Logarithmic Arithmetic (HSLA)

The present XSG 2.2 offers only fixed-point arithmetic blocks and lacks so FP operations.
Our HSLA based blockset extends XSG with arithmetic compatible with FP operations.

Behind the HSLA is our deep knowledge of related DSP problems. We have cooperated on
the long-term research project [2] to implement arithmetic unit with the precision of FP

(IEEE 754) representation. The research has resulted in the development of the logarithmic
arithmetic unit and in an ASIC (European Logarithmic Microprocessor) based on it.

The FPGA circuits were used for the prototyping and verification of the ASIC. Other
outputs as libraries in language-C, MATLAB/Simulink interfaces and HDL based intellectual

property cores for the FPGA circuits were so programmed as side effect.
We used both high-level functions and IP cores to extend XSG using its Black Box

methodology. There is an example of our 19-bit HSLA based library for the XSG in the
Figure 2. For more information about current state of HSLA see [1] and for the base

information about logarithmic arithmetic see [2] and [3].

Figure 2 HSLA based library for the Xilinx System Generator (XSG)

3 Utilisation and Implementation of the HSLA based Library

There is a typical example of the utilisation in the Figure 3. The Gateway blocks are special
XSG blocks. Their purpose is to separate FPGA algorithmic part (Subsystem in the Figure 3)

designed using XSG blockset from the rest of (common Simulink) blocks. Block System
Generator serves to automatically generate the HDL code out of the part between Gateways.

Figure 3 Support for RC1000 card

Our encapsulation of the HSLA into the XSG is based on its Black Boxes. See an example
in the Figure 4 for the logarithmic multiplication (LOG MUL) from the Figure 2.

Figure 4 Implementation of the logarithmic multiplication (LOG MUL)

The in/out ports (a, b, z) of the subsystem with the Black Box are directly connected to the

Gateway XSG blocks. It allows describe the functionality using common Simulink blocks for
the simulation purposes. For instance, our logarithmic multiplication has latency two and is

not pipelined (see parameters in the Table 1 for all the basic operations). We have modelled
this property using a combination of time-dependent Simulink blocks (see Figure 4).

Table 1 Implementation details of 19bit HSLA operations for Virtex2000e-6 on

 the card RC1000. The addition and subtraction uses 8 Virtex BRAMs.

Operation # Slices # Equiv. gates Max. freq.

[MHz]

Latency Pipelined

 Multiplication 218 (1%) 3 844 64 2 No

 Division 235 (1%) 4 106 54 2 No

 Square root 175 (1%) 3 170 59 2 No

 Addition 1 478 (9%) 132 410 38 8 Yes

 Substraction 1 789 (9%) 132 410 38 8 Yes

After the automatic code generation the Black Box (lmul19_wrapper in the Figure 4) will

replace the whole part between in/out (a, b, z) ports. This file, called wrapper, is written in
HDL language and provides just interface to HDL file which already describes the

functionality. It allows replicate the usage of represented block many times in the same design
schema.

This concept has allowed us encapsulate basic HSLA operations (see the overview in the
Table 1) and finally add to the XSG possibility to design new class of DSP algorithms.

4 Support for the Target Hardware and Algorithm Implementations

By utilisation of XSG, we have prepared support to evaluate HSLA operations and advanced
DSP algorithms based on them using MATLAB/Simulink.

We have utilised MATLAB/Simulink and XSG features to prepare support for RC1000
card [6] (see Figure 3) as the target HW. This wrapper can be reused for different

applications running on RC1000 by changing just the part hidden under the block Subsystem.
All the basic operations form the Table 1 were evaluated on RC1000 by this way.

Parameters in the first three colums are results for the implementation on RC1000 card i.e.
costs on all the necessary resources hidden behind the wrapper from Figure 3 are counted in.

An advanced FP based DSP algorithm for the FPGA can be designed mostly under
MATLAB/Simulink combining our HSLA operations and XSG. There is an illustrative

example in the Figure 5. Different latencies and unused parts of the blocks are handled with
the use of Delay XSG blocks. Latencies for all the operations are summarized in the Table 1.

Figure 5 Utilisation of HSLA and XSG blocks

Our evaluations indicate that present realisation of the logarithmic arithmetic is unique for
some kinds of DSP algorithms and that is even able to outperform, in other respects

equivalent, IEEE 754 based arithmetic units.

5 Conclusion

22

In2In1

In1
Out1

+

=

Presented HSLA based blockset extends XSG with possibilities to solve variety of FP based
DSP problems in real-time signal processing. For the latest information on HSLA see [1].

Features of the XSG we have utilised as FPGA designers:

� The automatic adaptation of FPGA technology (code generation)

allowed us concentrate on implementation problems using mostly
MATLAB/Simulink environment.

� We have extended set of functions (blockset) of the present XSG

Library using methodology based on its Black Boxes.

In addition to the brief overview in this paper, a methodology introduced in [4] can be

utilized to speed up the design process in terms of Black Boxes. At this moment we take into
account partial run-time reconfiguration (PRTR) of the FPGA circuits. Under IST grant

RECONF [8] we deal with PRTR methodology for dynamic re-configurable FPGA circuits.

References

[1] HSLA homepage of the Department of Signal Processing, UTIA

[available online: http://www.utia.cas.cz/ZS/home.php?ids=hsla, accessed:
28.9.2002]

[2] HSLA Project Homepage: ESPRIT programme, Long-Term Research project
33544

[available online: http://napier.ncl.ac.uk/HSLA, accessed: 28.9.2002]

[3] Coleman, J.N., Chester, E., Softley C. I. and Kadlec J. ‘Arithmetic on the

European Logarithmic Microprocessor’, IEEE Trans. Comput. Special Edition
on Computer Arithmetic, Vol. 49, No. 7, p. 702-715 and erratum vol. 49, no.

10, p. 1152 (July 2000).

[4] Licko, M., Pohl, Z., Matousek, R., Heramnek A. ‘Tuning and Implementation

of DSP Algorithms on FPGA’ Proc. of Matlab, pp.226-230, ISBN 80-7080-
446-7, (October 2001).

[available online: http://phobos.vscht.cz/matlab01/licko2.pdf, accessed:
28.9.2002]

[5] Hermanek, A., Matousek, R., Licko, M., Kadlec, J., ‘FPGA implementation of
logarithmic unit’ Proc. of Matlab, pp.84-90, ISBN 80-7080-401-7, (2000).

[available online: http://phobos.vscht.cz/matlab00/hermanek.pdf, accessed:
28.9.2002]

[6] Alpha Data Parallel Systems Ltd. ‘ADC-RC1000 card’
[available online: http://www.alpha-data.com/adc-rc1000.html, accessed:

28.9.2002]

[7] Xilinx Inc. ‘Xilinx System Generator’

[available online:
http://www.xilinx.com/xlnx/xil_prodcat_product.jsp?title=system_generator,

accessed: 28.9.2002]

[8] RECONF Project Homepage: IST programme 2001-34016
[available online: www.reconf.org, accessed: 28.9.2002]

Acknowledgments

This work was supported by the Ministry of Education of the Czech Republic under Project
LN00B096.

Contact

Department of Signal Processing
Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
Pod vodarenskou vezi 4, 182 08, Prague 8, Czech Republic
Email: Licko@utia.cas.cz
www: www.utia.cas.cz/ZS

