RECURSIVE FINITE INTERVAL CONSTANT MODULUS ALGORITHM
FOR BLIND EQUALIZATION

Antonin Hermdnek', Phillip Regalia®

Unstitute of Information Theory and Automation
Academy of Sciences of the Czech Republic

2Institute National de Télécommunication
Dept. Communication, Images and Information Processing, Evry, France

Abstract

In the paper, we reexamine the Finite Interval Constant Modulus Algorithm (FI-CMA)
proposed by P. Regalia and we present our modifications leading to its recursive form. The
proposed modifications are based on recursive updates of QR decomposition. The presented
results shows the computation savings and ability to use Recursive FI-CMA for tracking
time variant channels.

1 Introduction

In modern digital communication systems the main part of the receiver consumes an estimator
of transmited symbols. These estimators consist typicaly on an equalizer and decision device.
Receant systems (for expample GSM wireless system) use well known methods with training
sequence where a part of signal is a priory known and frequently repeated. The equalizer search
for that signal and adapt its parameters to minimize some criteria (typicaly MSE). Unfortunately
this known sequence is unnegligable part of the overall message (abouve 18% in GSM). For
that reasons the research effort of the last years were investigated to deconvolution algorithms
working blindly i.e. without training sequence. Very popular blind algorithm called Constant
Modulus Algorithm (CMA) was originaly proposed by Godard. In this section we review the
Finite-Interval CMA proposed by P. A. Regalia in [2]. In the following text we consider that all
vectors are column vectors.

System model: The symbol sequence to be transmited , {s,}, is assumed to be independent
and indenticaly distribured with non Gaussian probability distribution function and of constant
modulus (CM). CM property of transmited symbols is in telecommunication easily done by
digital modulation as is for example PSK. The data symbols are send throught Signgle-Input
Multiple-Output (SIMO) discreat channel with impulse response matrix H. We assume the
channle is finite in the length and Bounded Input Bounded Output (BIBO) stable. Than the
received signal has the form:

u, = Hs, + w, (1)

Wh

S Channel W Equalizer y
n h g n >

Figure 1: Discrete system model

where s, = [s;, Sp—1 ... Sp— M]T is M last successive input symbols, w,, is additive white Gaus-
sian noise vector, H is P X M, channel impulse response matrix and P is number of antennas
or oversampling factor. An equalizer is viewed as linear predictor of the order M and its output
can be written in the form:

M
Yn =D GhUn—k =8 Up (2)
k=0
where g and U are defined as :
g0 Up
g1 Up—1
g = . y Un =
8M Upn—M

From the equation (2), N successive equalizer outputs can be directly rewritten in the matrix
form as:

Y1 U;
Y2 U;
y=| . |=] . |8=QRg=Qw 3)
YN Ut
—_——
u

where the QR-decomposition of matrix I was used to obtain an orthonormal matrix Q. Par-
titioning Q matrix row-wise, the current equalizer output can be expressed using (2) and (3)
as:

aj
a3

(4)

Yn = qgw where Q=
dy
Criterium: CMA tries to minimize a cost function defined by the constant modulus (CM)

criterion which penalize deviation in the magnitude of the equalizer output from a fixed value.
This criterion has the form:

Tewa(e) = 1B [l = 7] 5)

where E'[] is expectation operator and vy is a constant chosen as a function of the source alphabet.
The FI-CMA is derived version of (5) where expectation operator is replaced by sumation over
finite data interval and is defined as:

I(g) = ﬁ (1val? 1)" = ﬁ (|gTUn\2 - 1)2 (6)

where constant v was replaced by one without lost of generality because it doesnot change the
position of the local extrema points. The equalizer coefficient vector g can be divided to the
radial term p and direction term g as follows:

g=rg lel=1 p=lgl

Searching for local extrems of (6) with respect to radial therm p, we optain optimal p which

DY

minimize cost function (6) to be equal to p2,; = St With such as p the minimization of (6)

n

with respect to direction therm g is equivalent to minimize the criteria defined as follow (for
details see [2]):

ZN: Yn my
Fg)=-S%05=— (7)
(Zn:l yn) my
Rewriting equation (7) using (3) and with the Q orthonormal and with constraint ||w| =1 the

nominator sumation in (7) simplifies to 392 = gUUTg? = wQQTw” = 1 and the criterion
gets the form:

N g
F(g)= S 55 =" (8)
(Cni143)?
In [2], the minimum of (7) is reached by the steep-descent algorithm of the form:
vipt = wi —pu(QTy® — Fiwy) 9)
witl = Vigr/[[vigl]

with F; defined by (8) and with step size approximation equal to 4 = «/F; where « is in the
range (1/3, 2/3). A small variation of that algorithm were experimentaly developed by P.A.
Regalia of the form:
vipr = wi —uQly?/F; (10)
Wit1 = Vigr/[[vial|

with the optimal step size 4 = v/N, where N is a block length. Variant (10) of FI-CMA has
faster convergence than (9) and in sequel, proposed modifications are tested on this version.
Note that minimal block size which enables successive blind deconvolution for CMA criterion is
N = M?.

Note : The presented FI-CMA algorithms work in batch mode, where several iterations of
(9) (resp. (10)) are calculated for deconvolution of data block of length N.

2 Algorithm modifications

Because of the batch mode of the above algorithms, they can be used only for time-invariant
channels or slowly variing channels with respect to block length. More over the solutions for
two successive blocks do not have to correspond to the same system delay, the blocks must
overlap and the search of the beginig of the message in the frame of data have to be donne
for each block. Unfortunately, bigger block size N leads to higher computation complexity
of deconvolution procedure and lowering N leads to frequent use of the ”search of message
beginning” procedure. The aim of the proposed modifications is to:

e use the above algorithms in recusrive (non-block) mode
e reduce the number of operation for long data streams
e develop an algorithm for time varying channels

Lets define the matrix U, as in (3) with only the last N input data vectors Uy:

UZ—NH
L/

U, = |: = lun”N“] , (11)
U, .

T
Un—N+2

: _ | Un
U:,f B l U£+1] (12)
Ui

Mn—i—l —

From (11) and (12) it is obvious that matrics U, and U, 1 are similar, both share part U,,; . So
Uy+1 can be viewd as shifted version of U, with first row deleted and with an additional row U,, 1
at the bottom. Because of that structure of the matrics U, and Uy, +; we can apply append/delete
row procedures of QR deconposition. These algorithms are described in [1] chapter 12.5.3 and its
computation complexity is expressed in Table 1. The above row-wise decomposition of matrix
U, , one update step consist of adding new row at the bottom and deleting the first row of R.
Note than for deleting of a row the full matrix Q is needed where as for adding a row it is not.

The matrix U, can be also viewed in the column wise decomposition. Define input data
matrix U, € RV*P as :

U, = [N ... Uy un]T

then the matrix U, has the following structure:
Z/{n = I:fjn ﬂn—l - ﬂn—N] (13)

Again the data matrics U,, and U, 11 share the same submatrix and U, 1 can be viewed as left-
to-right shifted version of the matrix U, with P columns added to its left part and P columns
deleted in its right part. The QR matrix can be updated by the appending/deleting a column
update algorithms. These algorithms are described in [1] chapter 12.5.2 and its complexity is
expressed in Table 1. Note that deleting the most right columns does need any computations
and algorithm can work just with the first P - M columns of matrix Q.

After QR actualization, one iteration of steep-descent algorithm (9) or (10) is proceed. Since
QR actualization change also the matrix R and because w = Rg, after each iteration of (9)
resp. (10) the equalizer coefficients g = R~'w must be updated and after each QR actualization
w = RG must be back calculated. The proposed algorithms consist of these steps:

1. initialization:
Q eye(N, N)
R = eye(P xN)

2. actualization of QR by append/delete row/column routine (as in [1])

3. calculate w = Rg

4. calculate one or few iterations of the steep-descent procedure (9) or (10)
5. calculate back g = R™'w

6. repeat steps 2. — 5. until end of data stream

Note: We expect that R does not change signnificantly so g do not have to be calculated and
steps 3. and 5. can be skipped. It results to a bit slower convergency but brings significantly
lower computation complexity.

22

0.2 T

*
¥ 18 4

*
o *ﬁi i 16
% .

o
*%'
*

e

¥ ot
N
.

-0.05

xok
*
e
ok

0.8 4

é

-0.1

f* ¢
*
°
>
s
.

-0.15

‘
"

* *

e
.

0.4 q

*
*

0.2 L L L L L L L L 0.2 L L L I I I I I I
400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

N
SE
3

0

Figure 2: Equalizer output and evolution of cost function F for P=2,M=9 with no noise and
static H

35

051 4

-0.25

L L L L L L L L L 0 L L L L L L L L L
0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 3: Equalizer output and evolution of cost function F for P=2 M=9 with additive Gaussian
white noise 14db and static H

3 Simulation results

We have consider a system with single input/two outputs channel of the 9" order and linear

equzlizer of length 9. The input data stream s,, is a random binary sequence of the length 2000.
In some cases the white Gaussian noise with SNR 14db is added to the channel output. Figures
2 and 3 show equalizer output and cost function evolution for the time invariant channel and
figures 4, and 5 show the results for the time variant channel. The evolution of the channel
parameters for time varying case is shown in Figure 7 (channel impulse response change just in
two coffitients).

For comparison of proposed algorithm with original FI-CMA, the equalizer output and cost
function evolution of FI-CMA for time varying channel, zero noise and block length N = 512 is
shown in Figure 6.

02
* f
015 ¥ :{l g
ﬁ * 25 g
. %
o1f ¥ E
#* *
& e)
0osf * g
ot * i
% * 15 E
o *
-0.051 % S |
% i
¥ 1 |
-0.1f * B
* *:.k
*
-0.15 "t g
05F g
*
“02l i PN
025 0
[200 400 600 800 1000 1200 1400 1600 1800 2000 o 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 4: Equalizer output and evolution of cost function F for P=2 M=9 with no noise and
dynamic H

25

0.2
2l i
15 —
1 i
05 ,

02 o

0 200 400 600 800 1000 1200 1400 1600 1800 2000 0 200 400 600 800 1000 1200 1400 1600 1800 2000

Figure 5: Equalizer output and evolution of cost function F for P=2 M=9 with additive Gaussian
noise 15db and dynamic H

=)

*
-0.02

-0.04

-0.06

-0.08

0.265

wx ¥ * 0.255

0251

I
400 500 600 0 2 4 6

Figure 6: Equalize output and cost function evaluation of the original FI-CMA
time varying channel for N=>512 and no additive noise, 20 iterations

0.9

I I I I
500 1000 1500 2000

Figure 7: Channel parameter variation

2500

16 18 20

algorithm for

Table 1: computation complexity

Procedure Complexity needed for
QR economic * 4(I?N — L3/3) FI-CMA
QR append row 3L% + 4LK + 8L Rec. CMA
QR append column 3L? + 6LK + 8L Rec. CMA
QR delete row 4K? 4+ 3L? + 6K + 3L | Rec CMA
QR delete column 0 for the last column | Rec CMA
One FI-CMA itearion | 4ANL + 4N + 3L both

Rg computation (L2 +L)/2 Rec CMA

Table 2: Computation complexity evaluated for some N and M

Variable value R-FI-CMA R-FI-CMA FI-CMA
row update | column update

N=2 M=7 5,112,534 8,878,950 | 27,525,531

N=2 M=9 10,736,622 20,212,430 | 46,296,495

N=20 M=17| 23,546,838 39,185,766 | 418,260,891

N=20 M=9| 55795950 98,218,190 | 694,486,961

4 Computation complexity

In this section, the computation complexity of different subroutines mentioned in section 2 is
compared. Because Recursive and Finite-Interval algorithms do not work with matrics of the
same size, we define the following symbols used in Table 1 as:

N - data block size for Finite Interval CMA, stream length for Recursive FI-CMA
M - equalizer order

P - oversampling factor

K - number of rows of Q matrix for Recursive FI-CMA, K = M?

L - number of columns of Q matrix for FI-CMA and Recursive FI-CMA with column append
procedure, size of triangular matrix R, L = P- M

Since it is very dificult to express cumputation complexity analyticaly, the complexity is numer-
ically evaluated in Table 2 for different N,M with P=2. It is seen that Recursive FI-CMA with
row update needs less computation the others.

5 Conclusion and Future work

The propossed algorithm have still fast convergence in comparison to gradient CMA which
convergs tipicaly after ~ 10* iterations. This property is achived thanks to orthonormality
of Q. In contrast to the FI-CMA proosed Recursive FI-CMA is suitable for deconvolution of
the system with time varying parameters and has similar convergency speed and sensibility to
additive noise. From Table 2 it is seen that the computation complexity is less or equal to
FI-CMA (depending on the parameters). This lower complexity is coused by selecting K as low

'my estimates of the complexity of economic QR are higher than presented. Reference were taken from [1]

as possible (i.e. K = M?) which is not optimal block length for FI-CMA as was discussed in
section 2.

There ara several things in which the algorithm can be umproved. First of all, the compu-
tation of cost function F in Recursive FI-CMA takes O(N M) operations and we look for some
recursive actualization of F with less computations. Next, the QR delete-row procedure works
with square Q matrix and the question is if we can use some economic type algorithm, wich
work just with first L columns. The above algorithms include many roots, squere-roots and
divisions which are very computationaly expensive operations for standard floating point arith-
metic. Because of that we plan to implement these algorithms on modern DSPs and compare
the floating point arithmetics with Logarithmic Numberigns System (LNS) arithmetic (see [**]).
We also plan to parallelize the algorithms and implement them on FPGA with partial dynamic
reconfiguration.

References

[1] Charles F. van Loan Gene H. Golub. Matriz Computations. Johns Hopkins University Press,
1996.

[2] Phillip A. Regalia. A finite interval constant modulus algorithm. In Proc. Interrmational
Conferene on Acoustics Speech and Signal Processing(ICASSP-2002), volume III, pages
2285-2288, Orlando, FL, May 13-17 2002.

