
SOLUTION OF SIMPLE DIOPHANTINE EQUATIONS
BY MEANS OF MATLAB

Vladim��r Hanta

Institute of Chemical Technology, Department of Computing and Control Engineering

Abstract

At present, teaching in automatic control theory courses is carried out with a strong computer
support usually in MATLAB environment. Polynomial Toolbox has been developed for
operations on polynomials and polynomial matrices. An older version of that tool could be
downloaded as freeware from the Internet. A new version of it, Polynomial Toolbox 2.5, is
now available as a commercial product at a cost, which is unacceptable for intermittent use
in the framework of teaching.
The contribution is devoted to taking full advantage of standard MATLAB commands for
solving simple Diophantine equations by means of di�erent methods. There are described
three basic methods for solution of polynomial Diophantine equations (the Euclidean algo-
rithm { polynomial division algorithm, method based on elementary transformations of ma-
trices and method of inde�nite coeÆcients). They all are soluble with support of MATLAB
or its standard toolbox commands. The contribution also compares their computational
complexity and characterizes them from the standpoint of demands put on inexpert users.

1 Introduction

Beside classical methods of design in frequency-, state- or time-domain, algebraic methods belong
to the basic theoretical methods of the design of linear discrete control systems. Algebraic
theory of discrete linear control has started developing since the seventies of the last century. Its
essential advantage in contrast to classical methods is the fact that it is based on input-output
description of a discrete system. Discrete controllers can be realized as a suitable di�erence
equation only. With a good description of a system and with known input variables, control
algorithms that are capable of error signal elimination in a �nite number of control steps can be
designed contrary to the continuous control methods of design.

2 Algebraic Control Methods in Education

Algebraic methods of control are standard parts of courses in the �elds of automation and control
engineering at technical universities. Tasks of discrete algebraic control synthesis used to be
diÆcult to solve not long ago in the courses. All calculations, which were often complicated, were
carried out without computer support. Nowadays, MATLAB computational and visualization
system, has become a standard tool for control theory teaching (and also for a number of other
scienti�c branches). Polynomial Toolbox program package for operations with polynomials and
polynomial matrices involving tools for solutions of tasks of algebraic discrete control has been
developed. This toolbox, which contains more than two hundred functions, used to be free to
download from Internet.

A new object oriented version, which appeared in 1998, is completely a standard com-
mercial product. The price of the Classroom Kit for schools is all of 500 dollars. Considering
the need of the Polynomial Toolbox in control theory courses at ICHT Prague lasting about
two weeks yearly only, its price is too high. In addition, synthesis of single- input single-output
discrete control circuits is carried out in the courses only. These tasks are soluble in a simple
way by means of the standard MATLAB and its parts, Control System Toolbox and Symbolic
Toolbox.

3 Linear Diophantine Polynomial Equations

The linear Diophantine polynomial equation is indeterminate equation given in the form

ax+ by = c

where a, b, c are given and x, y are unknown polynomials. A general solution of the equation
can be found as a linear combination of a particular solution of the complete and a general
solution of the reduced Diophantine equations:

x = pc=d + rt

y = qc=d + st

where d is the greatest common divisor of the polynomials a, b and t is an arbitrary polynomial
by means of which properties of a solution are set up.

4 Methods of Diophantine Equation Solving

In the framework of algebraic control theory teaching at ICHT in Prague, three methods that can
be realized in the MATLAB and standard toolboxes are used for solving of simple Diophantine
equations:

1. Euclidean algorithm for searching of the greatest common divisor of two polynomials,

2. method of elementary modi�cations of a matrix,

3. method of inde�nite coeÆcients.

4.1 Euclidean Algorithm

Euclidean algorithm for searching of the greatest common divisor of two polynomials can be
extended for solving :

h0 = a

h1 = b

h0 = q1h1 + h2

h1 = q2h2 + h3

� � �

hm�2 = qm�1hm�1 + hm

hm�1 = qmhm + 0

d = (a; b) = hm

The extension of the algorithm for computation of the coeÆcients p, q for representation of the
largest common divisor of two polynomials as their linear combination is presented below:

procedure Particular solution of a Diophantine equation ax+ by = c
over a domain of integrity by Euclidean algorithm
begin

input(a, b, c);
� := a; � := b; i := 0;
repeat

i := i + 1;
hi := quotient(�, �);
r := remainder(�, �);
� := �; � := r;

until r = 0;
d := �;
p := 0; q := 1;
for j :=m� 1 step �1 to 1 do

begin
r := p; p := q; q := r � hi � p

end;
output(d, p, q)

end;

The source text of the corresponding m{�le is as follows:

function [d,p,q,r,s] = euklidalg(a,b,c);

% Solution of Diophantine equation ax + by = c

% by means of Euclidean algorithm

% The greatest common divisor is the last nonzero remainder

% Back substitution:

% coefficients of the linear combination p, q

% r = -b/d, s = a/d

%

% test of equation correctness:

if isempty(find(a)) | isempty(find(b))

display('Diophantine equation is not given correctly!')

p=0; q=0; d=0; s=0; r=0;

return

end

alfa=a; beta=b; rem=a;

% search for the greatest common divisor:

i=0;

n=abs(length(a)-length(b))+1;

if n == 1

n=n+1;

end

% test of zero remainder:

while norm(rem,inf) > 100*eps

i=i+1;

% elimination the zero leading coefficients:

ind=find(beta);

beta=beta(ind(1):length(beta));

% quotient and remainder:

[quot,rem]=deconv(alfa,beta);

i0=1+n-length(quot);

% storing of quotients:

qq(i,i0:n)=quot;

% shift of polynomials:

alfa=beta; beta=rem;

end

% recurrent computation of the coefficients

d=alfa; p=0; q=1; m=i-1

for i=m:-1:1

r=p; p=q

% formal rearrangement for polynomial sum executing:

rr=zeros(1,length(qq(i,:))+length(p)-1);

rr(length(rr)-length(r)+1:length(rr))=r;

% computation of further element of the sequence:

q=rr-conv(qq(i,:),p);

end

% normalization of polynomial:

ind=find(q); q=q(ind(1):length(q));

% general solution of the reduced equation:

r=-deconv(b,d); s=deconv(a,d);

return

4.2 Elementary modi�cations of a matrix

Using the method of elementary modi�cations of a matrix, the set of equations

1 a+ 0 b = a

0 a+ 1 b = b

is modi�ed with the help of elementary matrix modi�cations by sequential reducing of the degree
of the polynomials into the form

pa+ qb = d

ra+ sb = 0

The source text of the corresponding m-�le for solution of a Diophantine equation by means of
elementary matrix modi�cations is given below.

function [d,p,q,r,s] = elmodmat(a,b,c)

% Solution of Diophantine equation ax + by = c

% by elementary matrix modifications:

% [1 0 a]

% [0 1 b]

% The aim is to modify the matrix by means of

% elementary operations into the form:

% [p q d]

% [r s 0]

% Function uses Symbolic Math Toolbox

%

% test of equation correctness:

if isempty(find(a)) | isempty(find(b))

display('Diophantine equation is not given correctly!')

p=0; q=0; d=0; s=0; r=0;

return

end

syms R X ; % symbolic variable definition

A=poly2sym(a,X); % symbolic polynomial a

B=poly2sym(b,X); % symbolic polynomial b

R1=[1,0,A]; % the first row of the matrix

R2=[0,1,B]; % the second row of the matrix

% test of founded divisor:

while norm(sym2poly(R2(3)),inf) > 100*eps

aa=sym2poly(R1(3)); bb=sym2poly(R2(3));

% normalization of the polynomials and matrix rows:

R1=R1/aa(1); R2=R2/bb(1);

aa=aa/aa(1); bb=bb/bb(1);

% n is difference between the polynomial degrees:

n=length(bb)-length(aa);

if n < 0 % exchange of the matrix rows

R=R1; R1=R2; R2=R;

pom=aa; aa=bb; bb=pom;

n=-n;

end

% reduction of the polynomial degree:

R2=collect(R2-bb(1)/aa(1)*X^n*R1,X);

end

% the largest common divisor:

d=sym2poly(R1(3));

% particular solution:

p=sym2poly(R1(1)); q=sym2poly(R1(2));

% general solution of reduced equation:

r=sym2poly(R2(1)); s=sym2poly(R2(2));

return

4.3 Method of Inde�nite CoeÆcients

The method of inde�nite coeÆcients search for a particular solution of a Diophantine equation
only. The degrees of the polynomials x and y have to be be guessed. After substitution of
the polynomials with inde�nite coeÆcients, values of the coeÆcients are computed by solving
of a set of linear simultaneous equations. If there is no solution, it is necessary to modify the
guesses of polynomial degrees. Computations are carried out using the Symbolic Toolbox, the
corresponding function can be formulated in the following way.

function [d,p,q,r,s] = indefcoef(a,b,c)

% Solution of Diophantine equation ax + by = c

% by means of polynomials with indefinite coefficients

% polynomials p, q are searched as the minimum solution of equation ap + bq = d

% polynomial d is the greatest common divisor of polynomials a, b

% the greatest common divisor is computed with help of Maple function gcd

% r = -b/d, s = a/d

% function uses Symbolic Math Toolbox

%

% test of equation correctness

if isempty(find(a)) | isempty(find(b))

display('Diophantine equation is given incorrectly!')

p=0; q=0; d=0; s=0; r=0;

return

end

syms X ; % definition of a symbolic variable

A=poly2sym(a,X); % symbolic polynomial a

B=poly2sym(b,X); % symbolic polynomial b

C=poly2sym(c,X); % symbolic polynomial c

% test if equation can be solved

D=maple('gcd',A,B);

if D = maple('gcd',C,D)

display('Diophantine equation has no solution!');

return

end

d=sym2poly(D); dn=length(a)-length(b);

% first possible values of polynomial degrees

if dn >= 0

m=0; n=dn;

else

m=-dn; n=0;

end

error=1000*eps;

% test if polynomials were successfully found

while error>=1000*eps

syms x y;

% definition of symbolic indefinite coefficients

for i=0:m

xx(i+1)=sym(strcat('x',int2str(i)));

end

x=xx(1);

for i=1:m

x=x+xx(i+1)*X^i;

end

for i=0:n

yy(i+1)=sym(strcat('y',int2str(i)));

end

y=yy(1);

for i=1:n

y=y+yy(i+1)*X^i;

end

% creation of symbolic Diophantine equation, determination of coefficients

diofantine=collect(A*x+B*y-D,X);

for i=1:length(a)+m

eqn(i)=subs(diff(diofantine,X,i-1)/prod(1:i-1),X,0);

end

xy=xx; xy(m+2:m+n+2)=yy;

% transformation of equations with coefficients into auxiliary polynomials

eqnt=subs(eqn,xy(1),'t');

for i=2:m+n+2

eqnt=subs(eqnt,xy(i),strcat('t^',int2str(i)));

end

% numerical matrix of equation set

for i=1:m+n+2

pol=sym2poly(eqnt(i));

AA(i,m+n+4-length(pol):m+n+3)=pol;

end

% solution of linear equation set

xn=AA(:,1:m+n+2)\(-AA(:,m+n+3));

% creation polynomials p,q

for i=1:n+1

q(i)=xn(i);

end

for i=n+2:m+n+2

p(i-n-1)=xn(i);

end

% test of correct choice of polynomials

error=norm(sym2poly(poly2sym(conv(a,p)+conv(b,q))-poly2sym(d)));

if error < 1000*eps

break; % polynomial were computed successfully

else

% correction of guessed polynomial degrees

AA=zeros(size(AA)); n=n+1; m=m+1;

end

end

% general solution of reduced equation

r=-deconv(b,d); s=deconv(a,d)

return

4.4 A Short Comparison of the Methods

The extended Euclidean algorithm is a fast method with the minimum number of steps. It
needs the standard MATLAB only. The method of elementary matrix modi�cations are more
time{consuming. To gain the minimum solution, it is necessary to reduce the degree of the
polynomials systematically by removing of the leading coeÆcient. At seeming simpli�cation
of the procedure by removing another coeÆcient than the leading one, the solution may be a
non{minimal one. It demands usage of the Symbolic Toolbox. Inde�nite coeÆcient method lays
high claims on a user, computations have sometimes to be repeated until the right degrees of
the polynomials x and y are set up.

4.5 A Simple Example

To synthetize a discrete controller, the following Diophantine equation is needed to be resolved

�
1� z�1

�
x+ z�1

�
1� 2z�1

�
y = 1

All the functions, euklidalg (extended Euclidean algorithm), elmodmat (elementary modi�ca-
tions of a matrix) and indefcoef (method of inde�nite coeÆcients), give the same results:

d = 1 p = 2z�1 + 1 q = �1
r = �z�1

�
1� 2z�1

�
s = 1� z�1

Then, the general solution of the equation is

x =
�
2z�1 + 1

�
� z�1

�
1� 2z�1

�
t

y = �1 +
�
1� z�1

�
t

Choice of the polynomial t as t = 0 gives the particular solution realizing the minimum controller:

x = 2z�1 + 1 y = �1

5 Conclusions

Solution of Diophantine equations is an essential task at synthesis of discrete controllers by means
of algebraic control theory. The three simple methods of their solution with assistance of the
MATLAB and its Symbolic Math toolboxes are described. Algorithms of all the methods were
coded as MATLAB functions. These fuctions gave the same or very similar results depending
on accuracy of numerical computations.

Acknowledgments

The work has been supported by the program No. MSM 223400007 of the Ministry of Education,
Youth and Sports of the Czech Republic.

References

[1] Using MATLAB. The MathWorks, Inc., Natick, MA, 1998.

[2] V. Hanta. Solution to the Time-Optimal Discrete-Control Problem byMeans of MATLAB. In
13th International Conference on Process Control PC '01, pages P049/1{P049/5, Tatransk�e
Matliare, 2001. Slovak University of Technology.

[3] V. Ku�cera. Discrete Linear Control: the Polynomial Equation Approach. Academia, Prague,
1979.

[4] S. MacLane and G. Birkho�. Algebra. MacMillan Co., New York, 1988.

[5] C. Moler and P.J. Costa. Symbolic Math Toolbox for Use with MATLAB. The MathWorks,
Inc., Natick, MA, 1997.

Ing. Vladim��r Hanta, CSc.
Institute of Chemical Technology, Prague
Department of Computing and Control Engineering
Technick�a 1905, 166 28 Prague 6
phone: 00420-224 354 212, fax: 00420-224 355 053, e-mail: hantav@vscht.cz

