

PERFORMANCE ANALYSIS OF SERIAL PORT INTERFACE
IN MATLAB

Petr Blaha , Pavel Václavek

Centre for Applied Cybernetics, Brno University of Technology, 612 66 Brno, Bo�etěchova 2, Czech Republic,

Tel.: +420 541 141 160, Fax: +420 541 141 123, E-mail: blahap@feec.vutbr.cz, vaclavek@feec.vutbr.cz

Abstract: This article is interested in serial communication in the environment of Matlab. It
compares Matlab's serial port interface with javax.comm package based realization of serial
communication and the solution programmed as a C MEX-File. The stress is laid on the
comparison of time requirements on data exchange. The testing is provided on two different baud
rates and with two different data packet sizes.

Keywords: serial port, Java, C MEX-File

1. Introduction

The serial communication serves as a very simple tool for mutual data exchange between different
devices, e.g. computers, scientific devices and peripherals. The serial port interface is implemented
directly in Matlab. It enables to configure serial ports, to use control pins, to write and read data, to use
events and actions and to record information to disk. It is supported identically on many platforms due
to Java language based implementation. For more information about the Matlab's serial port interface
see [1].

This article is motivated by bad experiences with Matlab's serial port interface. We needed to
communicate with Motorola DSP56F805 evaluation module [2]. The data packets sent and obtained
back from EVM were both short (about 6 bytes). The communication was required to run as fast as
possible. We have tried to increase the baud rate in order to increase the communication speed but it
did not lead to expected results. It forced us to write our own C MEX-File realizing the serial
communication in C language using Windows API functions. The intention of this article is to
compare these two realizations. The Java language solution using javax.comm is compared too.

The article is organized as follows. The second chapter contains the description of realized tests.
The third chapter summarizes obtained results. The fourth chapter enumerates used hardware and
software and the last chapter concludes the results.

2. Description of realizations

At first we have measured the time spent on sending and receiving one character using two different
baud rates. Motorola DSP56F805 evaluation module was employed as a second communication
device. It was working only as a responder since it immediately returned received character back to
PC.

It is impossible to measure the time interval needed for exchange of one character using supported
Matlab functions. Due to this we have measured the time interval consumed by the exchange of
hundred characters. The latency caused by for cycle is negligible. This interval is already measurable
with the Matlab functions tic and toc. Combination of these commands gives number of seconds
required for the operations enclosed with them.

Secondly we have measured the time spend on sending and receiving buffer of characters. The
buffer of hundred characters was sent out. When the DSP56F805 EVM obtained the last character of
the buffer it immediately started to send the same buffer back to Matlab. The buffer was sent ten times
to increase the precision of time interval measurement. The testing was realized again using two
different baud rates.

The following paragraphs describe the different realizations in details.

2.1. Matlab’s Serial Port Interface

This realization was implemented easily since it is in Matlab manner according to [1].

s = serial('com1','BaudRate',9600);
fopen(s);
data_out = 1;
tic;
for I = 1:100,

fwrite(s,data_out,'schar');
data_in = fread(s,1,'schar');

end;
t = toc;
fclose(s);
clear s;

s = serial('com1','BaudRate',9600);
fopen(s);
data_out = 1:100;
tic;
for I = 1:10,

fwrite(s,data_out,'schar');
data_in = fread(s,100,'schar');

end;
t = toc;
fclose(s);
clear s;

Code 1: Matlab's SPI (100x one byte) Code 2: Matlab's SPI (10x hundred bytes)

2.2. C MEX-File mexserial
This C MEX-File opens, initializes, sends data, receives the same amount of data and closes the serial
port each time it is called. It is implemented using API functions of Windows (used functions are
CreateFile, GetCommState, SetCommState, SetupComm, WriteFile, ReadFile, CloseHandle).

data_out = 1;
tic;
for i=1:100,

data_in = mexserial(data_out);
end;
t=toc

data_out = 1:100;
tic;
for i=1:10,

data_in = mexserial(data_out);
end;
t=toc

Code 3: mexserial (100x one byte) Code 4: mexserial (10x hundred bytes)

2.3. C MEX-File mexserialpersistent.
Its functionality changes according to the first input parameter. The number 0 means to open and to
initialize serial port, 1 means to send data, 2 means to receive data and 3 means to close serial port.
The serial port stays opened during the data transfers. Its handle is stored in persistent variable.

mexserialpersistent(0,0);
data_out = 1;
tic;
for i=1:100,

mexserialpersistent(1,data_out);
data_in = mexserialpersistent(2,1);

end;
t=toc;
mexserialpersistent(3,0);

mexserialpersistent(0,0);
data_out = 1:100;
tic;
for i=1:10,

mexserialpersistent(1,data_out);
data_in = mexserialpersistent(2,100);

end;
t=toc;
mexserialpersistent(3,0);

Code 5: mexserialpersistent (100x one byte) Code 6: mexserialpersistent (10x hundred
bytes)

2.4. javax.comm library
New versions of Matlab support operations with Java classes and objects in the environment of
Matlab. The way of operating with Java language is detailed in [1]. In fact, the Serial Port Interface is
based on this library.

commPort = javax.comm.CommPortIdentifier.getPortIdentifier('COM1');
serialPort = open(commPort,'serial',1000);
setSerialPortParams(serialPort, 9600, 8, 1, 0);
out = java.io.OutputStreamWriter(getOutputStream(serialPort));
in = getInputStream(serialPort);
data_out = 'a';
tic;
for i = 1:100
 out.write(data_out);

flush(out);
numAvail = available(in);
while numAvail < 1

numAvail = available(in);
end
data_in = read(in);

end
t=toc;
close(in);
close(out);
close(serialPort);

 Code 7: javax.com

3. Results summary

All the measurements are summarized
lowest communication delay is accom
more time consuming was realization
realization using C MEX-File mexse
each data transfer. The realization usin
slow. It can be seen in Table 1 that the
the increase of the data transfer speed
mexserialpersistent realization is m
port interface (baud rate - 115200, styl

First we thought that the problem
Matlab's serial port interface using jav
that the Matlab is the one who causes
the serial port under Matlab.

Baud
rate

Style of the
transfer

 SPI
under
W2000

9600 100 times 1
character 10.22

9600 10 times 100
characters 3.09

115200 100 times 1
character 10.08

115200 10 times 100
characters 1.312

Tab

b = char(1:100);
data_out = java.lang.String(b);
tic;
for i = 1:10

out.write(data_out,0,100);
flush(out);
obtained = 0;
numAvail = available(in);
while obtained < 100

numAvail = available(in);
if(numAvail >0)

data_in = read(in);
obtained = obtained + 1;

end
end

end
m library (100x one byte)

 in Table 1. As one can s
plished with the C MEX-
 using javax.comm library
rial where the serial port w
g Matlab's SPI under W20
 increase of baud rate in th

 (when transferring 100 tim
ore that 150 times faster th
e of the transfer � 100times

of big latency in communi
a language. The results abo
the latency. This is high tax

 SPI
under
Linux

C MEX -
File
mexserial
under
W2000

12.11 2.02

3.34 2.41

12.01 1.01

1.30 0.31

le 1: Summary of the result

)
(10x hundred bytes
ee, the fastest data transfer, i.e. the
File mexserialpersistent. Little bit
. Even more time consuming was
as opened and closed repeatedly for
00 as well as under Linux was very
is case almost did not bring together
es one character). Note also that the
an realization using Matlab's serial

 one character).

cation lies in the implementation of
ve show that this is not the truth and
 for user-friendly manipulation with

javax.comm
library
under
W2000

C MEX -
File
mexserial-
persistent
under
W2000

Theoretical
time
needed
only for the
data
transter

0.75 0.65 0.23

2.46 2.22 2.29

0.18 0.07 0.019

0.43 0.23 0.19

s

4. Hardware and software description
The following hardware was used to realize the tests:

- standard PC with Duron 650 processor
- Motorola DSP56F805 evaluation module

The PC was equipped with following software:
- Windows 2000
- Matlab v. 6.1 for Windows (the results obtained using new version v. 6.5 were the same)
- Linux RedHat 7.3
- Matlab v. 6.1 for Linux
- Metrowerks CodeWarrior for DSP56800 v. 5.0

5. Conclusion

The serial communication using Matlab's serial port interface is very ineffective. It is apparent from
result obtained in this paper. Its usage is not suitable for exchange of large amount of data divided into
small packets and in the cases where the time spent in communication is critical. The C MEX-File
realization is needed for such a cases.

This article could be useful for those who plan to use serial link communication in their project,
especially for those who need to communicate through the serial link as fast as possible.

6. References
[1] MATLAB External Interfaces. The MathWorks Inc., Version 6 , November 2000.

[2] DSP56F80x User's Manual. The Motorola Inc., Rev. 3.0. 2001.

Acknowledgement

This work was supported by the Ministry of Education of the Czech Republic under Project
LN00B096.

