REAL-TIME SIMULATION AND VISUALIZATION
OF HIGH-LEVEL MODEL-BASED CONTROL
OF REDUNDANT PARALLEL ROBOTS

Kvétoslav Belda
Institute of Information Theory and Automation
Academy of Sciences of the Czech Republic
Department of Adaptive Systems

Abstract: The paper briefly introduces examples of high-level model-based control
( Sliding Mode Control — SMC and Generalized Predictive Control — GPC)
applied to the redundant parallel robots. The objective is a presentation of using
MATLAB — SIMULINK environment for real-time simulation and visualization
of control of these robots. Implementation is accomplished by combination of C MEX
S-Functions and ordinary C MEX-Files within SIMULINK scheme under support
of Real-Time Windows Target (2.1) and Virtual Reality Toolbox (2.0).

1. Introduction

Topically, the next development in industrial area is constrained by deficit of powerful
machines with proportional dynamics and stiffness. Utilization of parallel robots, combined
with high-level model-based control, seems to be promising way, which solve this problem
i.e. the problem of dynamics, stiffness, accuracy and productivity.

Scheme of one exemplary prototype of the parallel structures is in Fig. 1. Figure shows
essential components of the planar redundant parallel robot.

Yy

P f Ba (p3
Workspace ’W
of the robot 1 A / K As
T / Movable platform
/AR, \
0.75 v
0.5 = { i ¢ \f v,
' L[k v ] |
0 Ci Cs | Bs|
0.25
_—\(pl f// / (p2
B

0 025 05 0.75 1

Fig. 1. Scheme of planar parallel robot with the most important geometrical description
(the Cartesian coordinates (xg, yg, ¥) of center of movable platform,
and all angles: motor angles (@;-4) and joint angles (y;-4)).

The objective of this paper is a presentation of using MATLAB — SIMULINK
environment for real-time simulation and visualization of high-level model-based control
of mentioned robots, represented by robot in Fig. 1. Implementation is accomplished by
combination of C MEX S-Functions and ordinary C MEX-Files within SIMULINK scheme
under support of Real-Time Windows Target (2.1) and Virtual Reality Toolbox (2.0).



2. High-level model-based control

From the control point of view, the principal task of a robot is its movement along
a planned trajectory. It is usually given in Cartesian coordinates, which are easily comprehensible
for users. In these coordinates, the robot motion can be described by the following system
of nonlinear differential equations [2, 4]:

R'MRy +R"MRy =R"g+R"Tu (1)

where M is a mass matrix, g is a vector of right sides, T is a redistributional matrix, R is a Jacobian
matrix, y is a robot output (Cartesian coordinates of movable platform, y = [xg, Vv, ¥])
and u is an input vector. This model (system of differential equations (1)) can be rewritten
to different forms according to the requirements of appropriate control approach. Since,
the robot represents multibody system with relatively time-consuming computation
of its model e.g. (1), the choice of control strategies focuses on discrete methods. They can
simply respect requirements to the computation time.

Now, after formulation of the robot model, we can continue with brief introduction
of high-level model-based control approaches: firstly, of Sliding Mode Control (SMC)
and consecutively, of Generalized Predictive Control (GPC).

2.1 Sliding Mode Control (SMC)

Discrete type of Sliding Mode Control [3] is derived in analogy of the theory of stability
in continuous domain. In general, it is based on ‘switching’ action and accomplishment
of Lyapunov theorem of the stability.

Let us consider system of differential equations (1), which can be simply transformed
and discretized by Taylor series with sampling ¢ in the following state description:

X(k+1) = A(X(k)+BX() (k)  (X=[y,¥1=[xz, Y5, Vs ps 755 Y1) )
If we use this description (2), we can obtain control law in the following structure [3]:
u(k)=~(CB()) " {C[A(k) + (k) - X, (k +1)] - s(k + 1)} 3)

where s(k+1)=e*P 5s(k)—Ksign(s(k)), on the assumption that s(k) = AX(k) — Xa(k)),
represents the choice of sliding hyppersurface, matrix C is a choice of the sliding mode
and vector ¥ represents difference of the robot model from real measurement.

2.2 Generalized Predictive Control (GPC)

Predictive Control [3] is a multi-step control based on local optimization of quadratic
criterion (4) with linearized discrete state description (5) (obtained on the base of [5]):

Jk=8{(§f—w)r(§’—w)+ uT)»u} 4

X(k+1)= A X(k)+Bu(k)

y =Gu+f (prediction of future outputs) (5)
y(k)=CX(k)

If we make minimization of the quadratic criterion in the root form (i.e. J;=J"J) [4],
we obtain control law for force effects FM, acting directly to the movable platform.
We recompute them back (eq. 6) to real control actions of drives u according to equations (1):

uk)=FM — R'Tu =FM (6)

on drives

Now, the both controls can be already used for real-time purpose.



3. Executive control procedures

This chapter introduces implementation of control algorithms trough capsulation
of their C code in a form of S-functions into SIMULINK blocks and alternative using of basic
blocks as structural elements for auxiliary tasks (loading of desired trajectory, for direct
kinematic transformation etc.).

Essential structure of controllers of sliding and predictive algorithms - SMC and GPC
is generally characterized as follows: First part is composed of computing of robot model,
provided by functions McISMC.c for SMC and McIGPC.c for GPC. The second part is
composed of computations of real controllers by functions cISMC.c and cIGPC.c.
Both these parts are consecutively connected within S-functions (SmodSMC.c and SfunGPC.c),
which are capsulated in SIMULINK blocks. Mentioned blocks, from user viewpoint, represent
real controllers with user interface, enabling to set their parameters. Structure of files, adjusted
for Real-Time Windows Target, is shown in the following example for Sliding Mode Control:

* Structure of classical function in C code (mex function for MATLAB [1]).

Executive part of the function.
Functional parameters firstly include outputs (first line)
and rest part of parameters are inputs).

—

#include <math.h>
#include "mex.h"
void Cfun MclSMC(real T £f[3],real T B[3*4],real T Asmc[6],real T Bsmc[6*4],
real T X[6],
real T Ts, real T L, real T 1, real T a, real T m3)

{

/* Declaration of local (internal) variables *****kkkkkkkkkkkkkkkkkkkkx */
double ml10, IT10, pom; /* scalar variables */
double m([4], I[4], r[4] /* array variables */

/* body Of the Function ***kkkkkkkkkkkkkhkkkkhkkkkhhkkkhhkkkhkkkkkkkkkkkkkk* */
L J

‘/‘ Interface of the function for MATLAB. |

_
void mexFunction (int no, mxArray **out, int ni, const mxArray **in)

{

if (ni != 6) { mexErrMsgTxt ("6 input arguments required."); return;}
if (no != 4) { mexErrMsgTxt ("4 output arguments required."); return;}
out [0] = mxCreateDoubleMatrix (3,1, mxREAL); /* outputs: continuous model */
out [1] = mxCreateDoubleMatrix(3,4,mxREAL); /* outputs: continuous model */
out [2] = mxCreateDoubleMatrix (6,1, mxREAL); /* outputs: discrete model */
out [3] = mxCreateDoubleMatrix(6,4,mxREAL); /* outputs: discrete model */
] Declaration and definition of outputs.

/* Cfun MclSMC(f, B, Asmc, Bsmc,

£, Call of executive part of the function.

Ts, L, 1,

5 ; Functional parameters include outputs and then inputs.
a, m
A‘r””’/’//’//,/}/’ */

Cfun MclSMC (mxGetPr (out [0] ) ,mxGetPr (out [1]) ,mxGetPr (out [2] ) ,mxGetPr (out [3]),
mxGetPr (in[0]),
*mxGetPr (in[1]) , *mxGetPr (in[2]) , *mxGetPr (in[3]),
*mxGetPr (in[4]) , *mxGetPr (in[5])) ;




* S-function in C code (mex function for MATLAB [1]).
Example of S-function for computation of continuous robot model (SmodRob.c).

#define S_FUNCTION NAME SmodRob
#define S_FUNCTION LEVEL 2

#include <math.h> Addition of the Real-Time Windows Target header, enabling to use
#include <rtwintgt.h> <e—__ | math functions within S-functions compiled for R-T Win Target.
#include <simstruc.h> Note: The header #include<math.h> must precede this header.

/* Define for easy access of the input parameters
sGetSFcnParam(SimStruct *S, int T index) */

#define mxpa X0 ssGetSFcnParam(S,0) /* pointer to initial condition */
#define mxpa Ts ssGetSFcnParam(S,1) /* pointer to sample time */
#define ul (element) (*ulPtrs[element]) /* pointer to Input Port0 */

/* mdlInitializeSizes */
static void mdlInitializeSizes (SimStruct *S) { body of the function }

/* mdlInitializeSampleTimes */
static void mdlInitializeSampleTimes (SimStruct *S) { body of the function }

/* mdlInitializeConditions */
#define MDL INITIALIZE CONDITIONS
static void mdlInitializeConditions( SimStruct *S) { body of the function }

/* mdlOutputs */
static void mdlOutputs (SimStruct *S, int T tid) { body of the function }

/* mdlUpdate */
#define MDL_UPDATE
static void mdlUpdate (SimStruct *S, int T tid) { body of the function }

/* mdlDerivatives */
#define MDL_DERIVATIVES
static void mdlDerivatives (SimStruct *S) { body of the function }

/* mdlTerminate */
static void mdlTerminate (SimStruct *S) { }

#ifdef MATLAB MEX FILE /* Is this file being compiled as a MEX-file? */
#include "simulink.c" /* MEX-File interface mechanism */
#else
#include "cg sfun.h" /* Code generation registration function */
#endif

4. Real-time simulation under Windows Target

For practical use of presented control algorithms e.g. robot control under digital signal
processor (DSP), we need to obtain some orientational information on time limits (minimal
length of time step — of sampling period respectively), which determine time for computation
of new control action.

Real-Time Windows Target, special toolbox for MATLAB, enables prototyping and testing
of real-time systems; i.e. we can use a single computer, with installed MATLAB-SIMULINK
environment, as a host and target. After creating a model and its simulation with SIMULINK
in normal mode, Windows Target enables to generate executable code of SIMULINK schemes
in a form of separately running application in a processor of host computer. The application
runs in real time with SIMULINK external mode. Integration between SIMULINK external
mode and Real-Time Windows Target allows to use classical SIMULINK models as a graphical
user interface to active managing of process of the control during real-time run. Example of scheme
for robot control under Windows Target is in Fig. 2.



CIRTsimRobotWinTrgVR =]
File Edit Wew Simulation Format Tools Help 100k under maSk
2 . : of block VR sink
D|Dn§|t¥3E|QQ‘HE®|I?IEK[EIHG| 'l
Ontl |— ] T_Pem T ratation
RE?ET Step ontz e I_tem 1 translation
tue  Switch Ej in TsMain Gepsi) ova | ] et rotation
Termé EnableConst N estimated
E R | Rezet Ot |l I_2em2 translation
Cuuiteh xypsi Qs [l I_pem3 rotation
Terms pum IS n | perm tranbtat
falee — ) selector sypsi1 orts | 1_em3 zramstaion
wvpe Fixia i } » E: » " SmodRob r—| Fi1-4 measured Ol | —fw |_Amd.rotation
1A “. oo P SmodRob Fi OB [ |_éma rransiation
salectar - ) e 1-4 outtt || O_Aem1 rotation
wypsi Contrel Switeh dxypsi estimated vtz 0_Arm aransiation
To Wokspace ] xypsil . =
Fieset | o] uSMC H =E diy.psi) Oxtia el O_Am2 rotation
[id:3] | - = i estimated Ot —pof O_pemi2 transiation
resettable umping feedback FID u (14 \ [:;'Edk'"_emmcs Il ’ ntts || 0_Am3 rotaion
SME controller teedback SMC %1 cLar Pl (:'e‘;'i':zg P || 0 aransistion
- ot || O Amd rotation
desired trajectary xypsi > H :E vt O transiation
SELECT . onta e Tr_hdovable Platfonm rotation
anitch Center position ne= dasired onti [ Tr_Movvable Platfom translation
LS
i bTrJ1 translation
" ¥ psi_deg 1 —p
p=i eal—1 82 —{bTrI2 translation
zalactor saypsi Double Click 83 |l bTrI3 translation
Constant far trajectory data loading 84— DT dranslation
1 —lcTrd 1 translation
= e ¥ Duouble Click cal e srangtaion
psi for qualitative results 3] Trd3 transtation
" F i |l o TrJd translation
sir ap: Status Subzystem R Sink
Semeratar W sink Initial conditions set
Desired dpsi Switeh of trajectory M for first element of C5.
Ready 100%: (T 1] [T=e5.850  |odes v

Fig. 2. SIMULINK scheme for real time simulation (with Windows Target)
with visualization (Fig. 4) through Virtual Reality Toolbox (block VR Sink).

After recording and start of execution of the model in CPU we can survey needed
sampling period for computing of one time step. We can also watch decrease of power
of the MATLAB. It is given by outgoings on the communication between separately running
application and MATLAB. (In normal simulation, the power is 100%, i.e. there is not any delay,
because simulation runs directly under MATLAB). The following list shows the parameters
just in real time simulation (command >> rtwho):

Real-Time Windows Target version 2.10 (C) The MathWorks, Inc. 1994-2001
MATLAB performance = 96.4%

Kernel timeslice period = 0.999 ms
TIMERS: Number Period Running

1 0.01 Yes
DRIVERS: Name Address Parameters
RTsimRobotWinTrgVR 0 [1

For correct results, several parameters must be set before starting of real simulation.
Following figure (Fig. 3) shows some their example. We can use choice from toolbars —

— Real-Time Workshop — Options... for general setting of parameters of compilation
or furthermore some choice from External mode control panel... for connection or for setting
e.g. External signals & Triggering... Moreover, SIMULINK scheme in Fig. 2 includes block
(VR Sink), providing connection

<} RTsimRobotWinTrg¥R: External Signal & Triggering ;[EIﬂ . .
—— with window of Internet Explorer,
Block Path 1 5 5 5
¥ To Workspace RTsinRobotWinTrgVR/ xsiulys To Workspace ;I [ Select al ln Wthh the glVen process lS
e i e e =] | simultancously visualized in simple
¥ (x,7,psi) estimated RTsinRobotWinTrgVR/ (x,v,psi) estimated oy . . . .
X "lt'u I?Iulzksélacat i RTsimRUbuzwinTrgv'R,ff'E‘u %uikséa:et i & off Vlrtual enVernment (Hl Vlrtual
¥ VR Sink RTzinRobotWinTrgVR/VE sink/VR Sink . .
X d(x,¥,p3il) desired BTsinFobotWinTrgVR/dix,¥,psi) desired reallty) EXample Of the Creatlon
¥ d(x,y¥,psi) estimated RTsimRohotWinTrgWR/dix,¥,nai) estimated . .
i ET-iaRcbociinTeoii/cine of such model will be introduced
X ou il-4) ETsimRobotWinTrgVR/a (1-4) . .
_t=izna | | in the following chapter.
;I o to block I
Trigger
ST Is\gnal j Mode: Inne-shntj Trigger signal: Part: |1 Elament'l any . X
Duration: |1DUDUD Delay: |D R simfobow/inTrgvF/time ﬂ Flg. 3. Settlng Of EXtel‘nal
7' Am when conneat to targt Direction: [ising =] Levek [10 Holdof [0 Signals & Triggering'

Fleverll Help | Apply | Close |




5. Visualization with Virtual Reality Toolbox

Virtual Reality Toolbox [1] enables to construct VR model with surrounding environment
in separate graphical editor (Fig. 4). Moreover, we can prepare different viewpoint directions,
velocity of approach to VR object, movements etc., which can be chosen during the simulation
through operating panel.

E V-Realm Builder 2.0 — [D:\Dokumenty\MATLABrt12.1\00-VirtualReality\VRrobotF.wrl 10| x|

O File Edit Wiew MNodes Libraries Manipulators Mode ‘Window Help _Iﬂlﬂ

D|s|E| #[%(@ 2

[0 | %|i|m[=|m| o9]a]0|o|T|8|s|el|

R D[P | 87 [#@| 2[00 slooo|g|

=] B|@ ¢ v =li0«] ¢|lo|8]s

= — o
“n|=3|u9u |$ |$ |~£|E|e'°

(- YRrobotF wrl

T-J Background
[ Try Tr_Light

---T{} Tr_MovablePlatForm
E...T{} Tr_BasePlatFarm

Ell@] children
=-Ba shape
E-[0] appearance
D Appearance
EIE geometry
- Box
[]---G{} group-joints
[]---G{} Arms_group
-4<, Viewpaint_Crtho
F-40<, Viewpoint_Front
-4¢, Viewpaint_Ground
[-4<, Viewpaint_Side

Lok = [l |

[For Help, press F1

[ MavIGATION [Speed: 1 [10:12 8M 4

Fig. 4. V-Realm Builder 2.0 for creation of virtual reality model with its virtual environment.

3§ ¥irtual Reality Toolbox - Microsoft Internet Explorer _ 1Ol x|

J Soubor  Upravy Zobrazik  Oblbené  Néstroje  MapovEda |

Trajectory

J - A A fat | Ol Hedat (G Oblibené £ AHistorie ||%v =h - 7

of the movement

| adresa |@ htkpe 127,000, 158123 vr w1 029503547 279 indez, hml | @t |J0dkazy »

Movable
platform

Operating
panel

|@ Wiewpoint: Side view

l_ ’_ |4 S Internet 7

Fig. 5. Simple example of virtual reality in Internet Explorer (MS Internet Explorer)
connected with SIMULINK scheme (Fig. 2) trough the Virtual Reality Toolbox.



For opening of the virtual reality window, we use the block VR Sink. It includes
reference button to real window and list of all objects with their key coordinates. We mark
several key coordinates, which should be changed during the process. By this fact, that
the simple explorer is used, it is possible to watch given process also from remote PC.

<} Block Parameters: ¥R Sink o |EI|1|
%R Sink

YR Sink hlock writes values to virtual world node fields. Every port corresponds to one field.

Fields to be written are marked in the tree view. Ports are ardered alphabetically.
~Warld properties WRML tree

Associated file I” Show nodetypes [ Show field types
|||
0-YirtualRealityYRrabotF wrl
itualRealitWRrobotF wr Browse... B e UNNAMED
View Edil | Relosd | - b Te_Light
i b Tr_MovahlePlatiorm

4

b

B P Tr_BasePlatfiorm
- b group-joints

F- P Arms_group
B
&
B
b

Access control
’Vp Enahle remote view ‘

Description: - b Viewpoint_Ortho
# b viewpoint_Front
t- b Wiewpaoint_Ground

i b viewpoint_Side

Block properties
Sample time (-1 for inheriy:
fo.1

Preferences Ok | Cancel | Help | Apply |

Fig. 6. User interface for opening and editing of VR model (Block Parameters: VR Sink).

At the end of this chapter let us observe, that Virtual Reality Toolbox was used only
as one simple example of possibility of remote supervising of given technological process,
i.e. as an inspiration for solution of the question of visualization for technological processes by
means of commercially sourced visualizing programs (WinCC, InTouch, Control Panel etc.).

6. Results and Conclusion

The paper deals with C code implementation of Sliding Mode Control (SMC) and
Generalized Predictive Control (GPC) as examples of high-level model-based control
within SIMULINK environment. The programming in langue C is necessary for actual real-time
control of the physical model of the robot by digital signal processor (DSP).

References

[1] Online Manuals (in PDF): External Interfaces; Writing S-Functions. The MathWorks, Inc. 99-01.

[2] STEJSKAL, V.- VALASEK, M.: Kinematics and dynamics of machinery, Marcel Dekker, Inc. 1996.

[3] BOHM, J. — BELDA, K. — VALASEK, M.: Study of control of planar redundant parallel robot.
Proceedings of the IASTED Int. conference MIC 2001, 694-699.

[4] BELDA, K. —-BOHM, J. - VALASEK, M.: State-Space Generalized Predictive Control for Redundant
Parallel Robots, NATO ASI Workshop, Praha 2002.

[5] VALASEK, M. — STEINBAUER, P.: Nonlinear control of multibody systems, In: Euromech 99,
Lisabon, 1996, pp. 437 - 444.

Acknowledgement

This research is supported by IG CVUT (CTU IG 0204512, 2002) “Study of properties
of independvent (decentralized) and centralized control of redundant parallel robots”
and GA CR (102/02/0204, 2002-2004) “Design of adaptive control systems”.

Contact address:

Ustav teorie informace a automatizace AV CR
Oddéleni adaptivnich systému

Pod vodarenskou vézi 4, 182 08 Praha 8 — Liben
E-mail: belda@utia.cas.cz




