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Abstract

The paper is devoted to the presentation possibilities in the MATLAB en-

vironment using namely the MATLAB Web Server. For statistical data analysis

both MATLAB implemented functions and own algorithms have been used. The

main goal of the paper is in analysis of methods of signal prediction by classi-

cal methods and using adaptive nonlinear algorithms. Both approaches have

been tested by autoregressive models and by feed forward and recurrent arti�-

cial neural network model. The autoregressive model is based on SVD and QR

methods. The determination of model quality has been veri�ed by information

tests including Akaike information criterion and mean squared error.

1 Introduction

Signal prediction is very important tool of information engineering with many practical appli-
cations. Its theoretical base always comes out from analysis of historical data. Various methods
of signal prediction use autoregressive models, di�erent types of neural networks and tools of
system identi�cation and optimization. The following paper presents their possible use in predic-
tion of gas consumption. Matlab Web server has been used for the �nal presentation of results.

2 Structures for Signal Prediction

2.1 Autoregressive Models

The autoregressive model (AR) [8, 9] estimates the output signal y(n) from the linear combina-
tion of na previous values of this signal and a random element e(n) using relation

y(n) = �a1y(n� 1)� : : : � anay(n� na) + e(n) (1)

AR model is a special case of a stochastic process which is known as an ARMA model

y(n) + a1y(n� 1) + : : : + anay(n� na) = e(n) + c1e(n� 1) + : : : + cnce(n� nc) (2)

Autocorrelation (3) is a special case of cross-correlation. Algorithm of autocorrelation is based
on the mutual multiplication of series fx(n)g and fx(n+ k)g.

Rxx(k) =
X
n

x(n)x(n+ k); for k = 0;�1;�2; : : : ;�K (3)

After mutual multiplication we receive series of (2K+1) elements. This autocorrelation function
has the highest value for k = 0; series fx(n)g is self-multiplied. The principle of autocorrelation
has been used for selection of the maximum order of AR model.

Singular value decomposition (SVD) is an optimal orthogonal decomposition which has
a wide �eld of applications in rank determination and inversion of matrices, as well as in the
modelling, prediction, �ltering and information compression of data sequences [5]. Given any
m�n real matrix A, there exists an m�m real orthogonal matrix U, an n�n real orthogonal
matrix V and an m� n diagonal matrix S, such that

A = USVT ; S = UTAV: (4)



The decomposition (4) is called the singular values decomposition (SVD). The orthogonal, or
QR, factorization expresses any rectangular matrix as the product of an orthogonal or unitary
matrix and an upper triangular matrix. The QR decomposition of an m�n matrix A with rank
p is given by

A = QR (5)

where Q is anm�p orthogonal matrix and R is an p�n upper triangular matrix. When m = n,
Q and R are square matrices, and Q is an orthogonal matrix. QRcp (that is, QR with column
pivoting) factorization is used to pivote the columns of a matrix in order of maximum Euclidian
norm in successive orthogonal directions, while QR factorization is performed on the matrix [5].
The symbol cp can be named as column permutation as well. In both cases result is the same.

AP = QR (6)

Together with matrices Q and R we receive permutation matrix P with size n�n. This matrix
consists of n ones only.

2.2 Linear Neural Network

The main characteristic feature of the linear neural network (Fig. 1) is its transfer function,
which is unlimited linear function with unknown slope. In most cases, we can calculate a linear
network directly, such that its error is a minimum for the given input vectors and targets vectors.
In other cases, numerical problems prohibit direct calculations. Fortunately, we can always
train the network to have the minimum error by using the Least Mean Squares (Widrow-Ho�)
algorithm [2]. And thereby this neural network is by own concept very close to the autoregressive
models. For the prediction of time series it is suitable to use network architecture with delays.
Those delay are already in the ground of time series { in its time dependence.

2.3 Feed-Forward Backpropagation Neural Network

Both a feed-forward backpropagation (Fig. 2) and a linear neural network have no special ar-
chitecture in comparison with recurrent neural network. For our purpose we used two layer
network. The �rst transfer function was hyperbolic tangent sigmoid function and the second
transfer function was unlimited linear function with unknown slope. The Levenberg-Marquardt
backpropagation method has been used as a basic learning algorithm for this network type.
[1, 3]. This algorithm is based on calculation of the Jacobian matrix:
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and its application in the Levenberg-Marquardt modi�cation of backpropagation

�a = (JT (a)J(a) + �I)�1JT (a)e(a) (8)

where a = [w1(1; 1) w1(1; 2) � � � w1(S1; R) b1(1) � � � b1(S1) w2(1; 1) � � � bM(SM)]T is para-
meter vector, I is identity matrix, � is learning parameter, e(a) is error vector and M stands
for the number of network layers.

2.4 Recurrent Neural Network

A recurrent neural network (Fig. 3) is one in which the outputs from the output layer are
fed back to the set of input units. Neural networks of this kind are able to store information
about time, and therefore they are particularly suitable for forecasting applications. However,
while recurrent neural networks have many desirable features, there are practical problems in



Figure 1: Architecture of linear network and
structure of the neuron

Figure 2: Architecture of two layer feed for-
ward network

Figure 3: Architecture of recurrent network
with one external input and one output [4]

Figure 4: In time unfolded recurrent network
with 11 time layers

developing e�ective training algorithms for them [7]. For prediction we used a one layer model
with variable number of external inputs and with a variable number of hidden neurones. Hidden
neurones in architecture of the recurrent network are neurones without external input (Fig. 3).
The algorithm used for computing the error gradient is a so-called epochwise backpropagation

through time [12, 13], which can be derived by unfolding the temporal operation of a network into
a multi layer feed forward network that grows by one layer each time step (Fig. 4). This algorithm
is organized as follows. With t0 denoting the start time of the epoch and t1 denoting its end time,
the objective is to compute the gradient of Etotal(t0; t1). This is done by �rst letting the network
run through the interval [t0; t1] and saving the entire history of inputs to the network, network
state, and target vectors over this interval. Then a single backward pass over this history bu�er
is performed to compute the set of values of local gradients Æk(�) = �@Etotal(t0; t1)=@skl, for all
k 2 U and � 2 (t0; t1], by means of the equations

Æk(�) =

(
f 0k(sk(�))ek(�) if � = t1

f 0k(sk(�))
h
ek(�) +

P
l2U wlkÆl(� + 1)

i
if t0 < � < t1:

(9)



The symbol U denotes the set of output neurones and ek(�), k 2 U , are the corresponding errors.
Once the backpropagation computation has been performed back to time t0 + 1, the weight
changes may be made along the negative gradient of overall error by means of the equations

4wkl(�) = ��
@Etotal(t0; t1)

@wkl

= �

t1X
�=t0+1

Æk(�)xl(� � 1) (10)

where � is a positive learning rate parameter. Then a new weight matrix wkl(� + 1) is counted

wkl(� + 1) = wkl(�) +4wkl(�): (11)

3 Details of Used Prediction Methods

3.1 Data Speci�cation and Spectral Analysis

The data analysis has been applied to two data sets of gas consumption in the Czech Republic.
The �rst one stands for the data sequence measured with the sampling period of two hours
(1. Jan 1997 { 31. Mar 2000) and the second one represents the average gas consumption per
one day (1. Jan 1994 { 31. Dec 2001). For the same time period (1. Jan 1994 { 31. Dec 2001)
the average daily temperature is available (Fig. 5). The study of the given data resulted in the
fact that some measurements were not performed or they are missing. For the future work with
time series it was important to �ll in the missing measurements. The simplest way has been
used: missing values were replaced by the linear interpolation of the closest values.

The initial data analysis has been applied to normalized data modi�ed by di�erence of log-
arithms resulting in the sequence xi = log(xi+1)� log(xi). Spectral analysis has been performed
by the algorithm of FFT, which is built in MATLAB environment as a fft function. Spectral
density graph (Fig. 6 | graphs does not show the whole range of frequencies) calculated from
the data modi�ed by logarithmic di�erence clearly shows meaningful periodicity of 2 hours, one
day, 12 hours and 8 hours. In the low frequency area we �nd periods 3.5 days and 7 days and
of course period on one year. Results of spectral analysis of periods occurred in evolution of
average daily temperature in the Czech Republic were not so clear (Fig. 6c). Results of those
analysis have been used in selecting di�erent empiric constants.
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Figure 5: Three original time series before trend removing and standardization

3.2 Data Pre-processing for all Models

For all following calculations only the data with periodicity of one day has been used. All
data have been normalized by the trend removing, subtraction of mean value, dividing by the
standard deviation and �nally re-scaling into the interval �1 � x � 1. After calculations
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Figure 6: Spectral density of gas consumption and temperature using di�erence of log

(prediction results), for the higher information value, all data sets have been re-calculate back
into the scale of real data of gas consumption in the Czech Republic. Data sets modi�ed by the
di�erence of logarithm have not been used for the prediction.

3.3 Common Methods

As the classical prediction model we understand model, for which the whole data set is divided
in two parts. The �rst part is used to estimation of parameters and the second part is used for
the model validation. The adaptive prediction model takes necessary amount of data, calculates
parameters and gives the result, then the data set needful for calculation of parameters is shifted
(usually 1 sample ahead), parameters are recalculated and we receive new next result, and so
on. The process of model creation has been based upon various methods [6, 10, 11].

Results of calculations are presented in the table presented in Fig. 7 available on the
Web page http://phobos.vscht.cz/pavelkaa/. This table presents selected statistical character-
istics (mean, standard deviation, minimal and maximal values) describing properties of errors
calculated as diference between real data of gas consumption and the output from models. In-
formation criteria SSE and MSE describe the whole model. The number of values for which
the distance between real and predicted value is less or higher than 5% of nominal value of real
data is in percentage mentioned in columns called as in 5% and out 5%. Our desire is to have
maximal value in column in 5%. In other words, the column in 5% give us the information how
many predicted values in percentage have error less than 5% of its real nominal value.

3.4 Autoregressive Model

The number of parameters for the full AR model can be received from the autocorrelation
analysis of the given data. Searching algorithm has been applied on the standardized data.At
�rst the autocorrelation function has been calculated and then, to remove pertinent periodicity,
the oat mean has been calculated. The number of parameters for the full AR model has been
set equal to index, where autocorrelation function modi�ed by oat mean, had its 10% descent.
According to those conditions the full AR model should have n parameters applied to inputs

with gas values, inputs with temperature values and Day Identi�er (unchecked is 0, checked is
1). The identi�cation of the best subset AR model can be performed through the following three
steps:

� Perform SVD of m � n matrix A (A = USVT ). Choose the possible pseudorank of A
from the magnitude of the singular values. For each pseudorank g (2 � g � n�1), perform
QRcp factorization on the g � n matrix VT and select the set of relatively independent
regressor variables of size g; so subset Sg of regressors corresponding to each pseudorank
g is de�ned.

� For each subset AR model information criterion is computed. The subset Sr corresponding
to pseudorank r for which information criterion attains the optimal value (in most cases
the minimum value), is selected; the regressors of Sr are the candidates for the desired
best subset AR model.



� For the (2r � 1) models, with all possible combinations of regressors, information criterion
is determined. The model producing for example the minimum value for AIC is the best
subset AR model.

For the selection of number of parameter we can use one of �ve possibilities:

1. meaningful di�erence among singular values

2. descent of MSE in 5% surround of value MSE for the full set model

3. descent of re-calculated MSE in 5% surround of value MSE for the full set model

4. descent of AIC in 5% surround of value AIC for the full set model

5. descent of re-calculated AIC in 5% surround of value AIC for the full set model

Possible number of parameters for the selected models is summarized in the table presented
in Fig. 7, where in column diag S we �nd recommended numbers of parameters (values of gas
consumption) according to values gained from diagonal matrix S from SVD, other columns
likewise but with appropriate to information criterion. Item rc in the table signed Re-Calculated,
this is product of our modi�cation in using SVD and QRcp. After applying of permutation
matrix P we can use real permutated parameters or we can calculate new ones. After that can
have two di�erent models with di�erent accuracy. Usually results from the re-calculated models
are better.

3.5 Linear Neural Network

One-layer linear network with arbitrary architecture has been designed by MATLAB's instruc-
tion newlind from the Neural Network Toolbox. For learning of this network the overdetermined
system of equations has been de�ned and solved by the least-square method (LSM). Among posi-
tives of this method belong its calculation time, good accuracy and transparentness.

3.6 Feed-Forward Backpropagation Neural Network

The two-layer network created by MATLAB command newff of Neural Network Toolbox is
using Levenberg-Marquardt backpropagation [3] as the learning algorithm. The network has
an arbitrary architecture, 5 training epochs, hyperbolic tangent sigmoid as the �rst transfer
function and unlimited linear function with unknown slope as the second one. All networks
parameters { number of hidden neurones, number of training epochs and transfer functions {
have a strong inuence to the �nal prediction results. Their mutual combination resulting in
better prediction properties form one of the futures goals.

We have to emphasize that problem of suitable parameters estimation is not in the area of
decreasing learning error, it is relatively easy to train the network to minimize this error. The
more important problem is in the application of the resulting network for real data not used in
the learning stage. Networks seem to be in most cases over-learned and not able to generalize
resulting in the increase of error values. To minimize this problem several calculations have been
carried out to �nd suitable parameter regime with such items as number of hidden neurones
(from 1 to 50), number of learning epochs (in the range 5-500).

3.7 Recurrent Neural Network

Recurrent neural network which has been used as the last prediction model is relatively highly
sophisticated and complicated neural network. The network has been designed with arbitrary ar-
chitecture, too. As a squashing1 function the hyperbolic tangent has been used and the epochwise
backpropagation through time [12] as the learning algorithm has been used. Every network with
speci�c architecture had 500 learning epochs. To �nd typical behaviour for every single network
architecture one learning cycle three times with 3 di�erent initial weight initialization has been
done, so for for one speci�c network we have 3 �nal results. From them the best one has bee

1
transfer



selected with the lowest learning error represented by the SSE criterium. The learning algorithm
of recurrent network have speci�c safeties against �nding the global minimum in area of local
minimum in the re-initialization of the continuously decreasing learning error. Considering the
circumstances that the algorithm of recurrent network with epochwise backpropagation through
time algorithm is not included in Neural Network Toolbox of the MATLAB environment there
was a demand to programme it by ourself.

Calculations of recurrent network takes relatively long calculation time in order of minutes.
Results of this network were often better comparing with the simple network architecture.

4 Matlab Web Server

All �nal algorithms and codec have been rewritten and implemented into Matlab Web Server
running at our department. We widely recommend to visit http://phobos.vscht.cz/pavelkaa
where simple but clear web pages are settled. Simple and easy design have been created is
aspect to relatively long calculation times. Everyone can test own imagination of networks
architectures, own demands on accuracy and precision of prediction. You �nd here helpful
o�-line and on-line documentation, smart error checking and much more.

Figure 7: Interactive Web (model) interface



5 Conclusion

All presented prediction methods (linear, feed-forward and recurrent neural networks) have
been applied to real data sets of gas consumption in the Czech Republic during winter periods.
According to all previous tests it seems that the best prediction method is represented by the
linear neural network. But we have to remind, that this research has been used just for modelling
prediction possibilities of mentioned prediction methods and their simple comparison. For the
true speci�cation and decision which method is better than the others it will be necessary to
make more prediction tests.

There are many ways how to improve the prediction accuracy and precision. For example
by adding another data into the models like a data of wind speed, gas prices and so on. Or we
can use possibilities of more prediction methods and combine their results.

There are still many unanswered questions that should be studied. It is assumed that the
future research will be devoted to

� prediction testing using di�erent kinds of preprocessing
� selection of di�erent data sets and applying them in own algorithms
� multi-step prediction by improving (or modi�cation) of a one-step prediction model
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