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Abstract

Quite recently the polynomial design methods found a
new great field of application outside the control area:
the algebraic approach has been used successfully in sig-
nal processing and mobile communications. In contrast
to the control systems synthesis, polynomials and poly-
nomial matrices with complex coefficients are often re-
quired when designing filters, equalizers, decouplers and
other components of mobile phones for instance.

Polynomial Toolbox for MATLAB admits complex
polynomials in most computations, including Diophan-
tine equations and spectral factorizations. As a result,
the toolbox appears a suitable tool for rapid prototyp-
ing whenever polynomial design routines with complex
coefficients are required.

The objective of this report is twofold. First we would
like to explain in a clear and popular manner how the
complex coefficients arise in technical practice. Based
on this motivation, we will present important numeri-
cal algorithms for complex polynomials and polynomial
matrices and their implementation in the Polynomial
Toolbox for MATLAB. The power of the Toolbox will
be illustrated by selected numerical examples involving
complex coefficients finally.

1 Introduction

Within the control community there is no need to take
polynomial matrices with complex coefficients into ac-
count in fact. That is also why the great majority of
research results on polynomial methods, including nu-
merical algorithms, concern just the real case as a rule.

However, the ideas of the algebraic approach to con-
trol systems synthesis have recently been successfully
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by the grant agency of the Czech Republic under the contract
102/02/0709.

applied also in problems out of the control area, namely
in signals and communications [7, 8], and many of such
problems naturally call for polynomials and polynomial
matrices with complex coefficients. Speaking in broad
terms, complex entries are able to carry twofold infor-
mation about particular signal module and phase which
is often desirable. For example, several mobile radio
communication filtering algorithms rely upon complex
polynomials and solutions of related equations [2]. Vi-
brational systems and filters are additional examples of
systems whose models involve complex coefficients [1].
When applying the algebraic design methods in these
cases, solutions to linear and quadratic polynomial equa-
tions are sought.

2 Complex Coefficients in Com-
munications

In this section the structure of the mobile radio com-
munication channel is presented along with the way the
complex valued polynomials are introduced. The facts
presented here are mainly adopted from [2].

Basically, there are two reasons for going into complex
computations. First, it often appears convenient to code
the bitstream to be transmitted into complex numbers
and send their real and imaginary parts using the same
frequency range. Such a way, the bandwidth reserved
for the channel is more efficiently exploited. However,
even if the transmitted symbols are real, the amplitude
response of the overall communication channel can be-
come asymmetrical around the carrier frequency if inter-
ference or multipath propagation occurs, giving rise to
a complex transfer function in the baseband representa-
tion. These effects will be thoroughly described further.

2.1 The Radio Transmission System

The radio communication channel typically consists of
three parts: the transmitter, radio frequency (RF) chan-



nel and a receiver. The transmitter accepts data - time
series of bits - from a source and transforms it in a form
suitable for transmitting via the RF channel, typically
to a band-limited continuous-time signal. The channel
adds noise to the input signal and acts as a filter on
the transmitted data. Therefore, the receiver cannot be
just a pure ”reverse” of the transmitter but in addition
it has to process the received signal to remove distortion
introduced by the RF channel.

In the transmitter, the bit stream to be sent is divided
into groups of bits which form digital symbols - real or
complex numbers. By forming symbols, several bits can
be transmitted at the same time.

As the signal for the radio channel must be contin-
uous both in time and amplitude, the digital symbols
are pulse-shaped first. This pulse-shaping is performed
by a lowpass filter with a spectrum efficient impulse re-
sponse p(t). Such a way, the sequence of symbols {uk}
is transformed in a sequence of continuous-time pulses

sb(t) =
N∑

k=1

ukp(t− kTs)

where 1/Ts is the symbol rate. This signal is real valued
whenever the symbols accepted are real and complex
otherwise.

After pulse shaping, the modulation follows: the spec-
trum of sb(t) (the baseband signal) is shifted to a high
frequency band suitable for transmission. For both real
and complex valued symbols, the modulation can be ac-
complished by multiplying the baseband signal sb(t) by
a complex-valued carrier ejωct and transmitting the real
part of corresponding signal:

sp(t) = Re{sb(t)} cos ωct− Im{sb(t)} sinωct (1)

The RF channel is a link between the transmitter and
the receiver. The passband signal is carried by electro-
magnetic waves. However, the space between the trans-
mitter and receiver station often contains obstacles such
as buildings, mountains, etc. In addition, the waves are
reflected and scattered when touching grounds or other
objects, namely if the the carrier frequency is high. As
a result, signals which traverse different paths reach the
receiver at different times. This property is called the
delay spread. These effects cause that the transfer func-
tion describing the radio channel will in general not be
flat within the spectrum of the transmitted passband
signal sp(t) and will distort it accordingly, see Figure
2. Hence the baseband representation of the received
signal becomes nonsymmetric around ω = 0 even if the
transmitted sequence is real-valued. This implies that
the transfer function of the baseband representation of
the channel features complex coefficients.

It is clear now that the role of the receiver is twofold.
First of all, reversed versions of all operations performed

by the transmitter are to be applied. In case the chan-
nel were ideally perfect, the desired submitted symbols
would be exactly recovered.

However, as we tried to explain above, in reality the
received and transmitted symbols differ. Hence some
additional manipulations with the set of received sym-
bols have to follow to eliminate the imperfections of ra-
dio transmission. This problem can be mathematically
formulated as an optimization task. For computational
reasons, the cost criterion is often chosen as a quadratic
form of involved signals. In that case the whole theory
of Wiener and Kalman filtering can be directly applied.
In addition the overall communication channel is usu-
ally described by its transfer function as a ratio of two
polynomials. Then the polynomial methods for control
systems design can be easily adopted. The main dif-
ference compared to the control theory is that complex
polynomials are often addressed.

2.2 Designing Filters for Mobile Com-
munications

Many results on applying polynomial design methods in
filters and equalizers for mobile communications have
been achieved by the Signals and Systems Group at
the University of Uppsala which also cooperates with
the PolyX Ltd. closely. Their algorithms based on
polynomial approach for LQ optimal feedforward filters
and LQ optimal decision feedback equalizers have been
applied by the Ericsson company in their phones for
instance. An interested reader is referred to [3], [4], [5]
(http://www.signal.uu.se/Publications/pbookch.html)
for detailed description of particular procedures.

As one can check, the crucial computational parts of
all the papers cited above are the Diophantine equations,
often two-sided and symmetric, and polynomial spectral
factorizations. And not only scalar complex polynomi-
als but also complex polynomial matrices are of interest
to tackle more complex problems of mobile communica-
tions involving multiple-antenna arrays for instance [6].

In the next sections we will demonstrate that the
Polynomial Toolbox is capable to resolve such advanced
tasks. At first the algorithms for complex linear two-
sided symmetric equations and complex spectral factor-
izations are presented in the next section which are im-
plemented in the Polynomial Toolbox for MATLAB.

3 Advanced Algorithms for Com-
plex Polynomials

3.1 Two-sided Symmetric Equations

The problem of the matrix discrete time symmetric
equations with complex coefficients has been deeply



studied in [1]. In the same report also a reliable al-
gorithm based on Sylvester matrices was proposed. A
reader more interested in this problematic is strongly
recommended to read this paper.

In the sequel we will briefly outline the main ideas
leading to a reliable numerical method for the continu-
ous time complex polynomials. We will start with the
simpler scalar case.

For a(s) and b(s) scalar the concerned equation
a?(s)x(s) + a(s)x?(s) = b(s) reads

(ā0−ā1s+ā2s
2−· · ·+(−1)δaāδasδa)(x0+x1s+· · ·+xδxsδx)+

+(a0+· · ·+aδasδa)(x̄0−x̄1s+x̄2s
2−· · ·+(−1)δxx̄δxsδx) =

b0 + b1s + · · ·+ bδbs
δb.

By inspection, the considered polynomial equation is
equivalent to the following set of constant linear matrices
for coefficients of x(s):

ā0 0
−ā1 ā0

... −ā1
. . . ā0

āδ(−1)δ . . . −ā1

āδ(−1)δ
...

0
. . . āδ(−1)δ


︸ ︷︷ ︸

A1


x0

x1

...
xδ


︸ ︷︷ ︸

X

+

+



a0 0
a1 −a0

... −a1
. . . a0(−1)δ

aδ
. . . a1(−1)δ

−aδ

...

0
. . . aδ(−1)δ


︸ ︷︷ ︸

A2


x̄0

x̄1

...
x̄δ


︸ ︷︷ ︸

X

=


b0

b1

...
bδ


︸ ︷︷ ︸

B

Here δ is an integer such that δ ≥ max(δa, δb, δx). The
terms ai, bi, and xi respectively are zeros for i ≥ δa,
resp. i ≥ δb, resp. i ≥ δx.

According to the cited paper [1], this set can be rear-
ranged as([

Re[A1] Im[A1]
−Im[A1] Re[A1]

]
+

[
Re[A2] Im[A2]
Im[A2] −Re[A2]

])
︸ ︷︷ ︸

A

×

×
[

Re[X]
Im[X]

]
︸ ︷︷ ︸

X

=
[

Re[B]
Im[B]

]
︸ ︷︷ ︸

B

(2)

If δ satisfies δ ≥ δb then a solution to the above constant
matrix equation exists. Particular coefficients of x(s)
can be directly distilled from the vector X.

The set (2) is obviously redundant. However, linear
transformations can be explicitly prescribed which re-
duce the dimension of the set by employing the fact that
Im[xi] = 0 for i even and Re[xi] = 0 if i is odd.

For polynomial matrices the problem of symmetric
equation becomes far more complicated. Details can be
found in [11] for real case and in [1] in case of discrete
time symmetry and complex numbers.

Nevertheless, if we apply additional restrictions on the
shape of involved matrices and on their leading or coeffi-
cient terms, the above considerations can be formulated
in the matrix case too in principle. Namely, if we re-
quire X(s) having triangular constant coefficient matrix
and A0 having nonzero leading minors in addition to the
stability of A, the solution to the equation (2) is unique
and yields the desired polynomial solution X(s). Note
that these restrictions fit the conditions on uniqueness
of a matrix spectral factor.

A Sylvester algorithm equivalent to that of the pre-
vious section can also be derived in similar way. One
more preliminary step consists of rearranging the orig-
inal polynomial equation to a matrix-vector form. Of
course the subsequent reductions of the resulting set
AX = B are also much more involving. Nevertheless,
the reduction process as it has been suggested in [11] in
the real case and in [1] for complex discrete time poly-
nomials can be adopted for the complex continuous time
case as well.

3.2 Spectral Factorization

We will present two procedures for computing the poly-
nomial spectral factor in this section.

Quite recently a new numerical algorithm addressing
the scalar discrete time spectral factorization based on
fast Fourier transform (FFT) has been developed by the
Polynomial Toolbox authors [10]. Compared to its pred-
cessors, the new method performs better both in terms
of numerical accuracy and namely computational speed
[10]. Although the algorithm itself was originally pro-
posed for real polynomials, it is based on the theory of
complex valued functions and remains valid for complex
valued coefficients as well. The FFT algorithm and its
application in a practical signal processing problem is
the subject of another report downloadable from this
WWW site called FFT Based Algorithm for Spectral
Factorization, see also [19]. An interested reader is ad-
vised to see this document to understand the routine
and read about upgrading loudspeakers’ characteristics
by LQ feedforward optimization via this algorithm.

Another approach to spectral factorization is based on
the theory of Newton-Raphson iterations and symmetric
linear polynomial equations.

We will first illustrate the idea of the Newton-Raphson
iterations by a simple example of finding function roots.



Given a real function f(x) of one real variable, the solu-
tion to the equation f(x) = 0 can be reached under some
assumptions by the Newton’s iterational process. The
recursive formula reads f(xi+1) = f ′(xi)(xi − xi+1) =
df(xi, xi − xi+1) where f ′(xi and df(xi, .) mean respec-
tively the derivative and differential of f at the point
xi. The formula features a clear geometrical meaning
- the next iterations is computed as the intersection of
the tangent to the curve y = f(x) at the point [xi, f(xi)]
and the x−axis.

This approach has been proved successful in much
more general situations. For f being a function of many
variables, or even if f is a functional, the method stays
valid provided some properties of f and of the starting
point x0 are fulfilled. The process features quadratic
convergence if successful.

Solving the spectral factorization problem is equiva-
lent to finding a solution to the equation f(A) = A?A−
P = 0 under the constraint of stability. Applying the
Newton’s scheme, considering df(A) = A?dA + (dA)?A,
and replacing dA by Ai −Ai+1, we come to the formula

A?
i Ai+1 + A?

i+1Ai = P + A?
i Ai (3)

for the succeeding iteration Ai+1. Moreover, stability
and uniqueness of successive Ai’s is guaranteed provided
the initial A0 is stable and triangularity of either leading
or constant coefficient of all Ai’s is required. The proof
of this crucial statement was the subject of the reports
[14, 15] and [17].

Although only real polynomials and polynomial ma-
trices have been considered in the mentioned papers,
the approach can be applied to complex coefficients di-
rectly. Hence the only remaining issue is the solution to
the symmetric (matrix) polynomial equation with com-
plex entries. Related algorithms are fortunately avail-
able now and were discussed in the previous section.

4 Polynomial Toolbox and Com-
plex Coefficients

In the previous sections, the importance of polynomi-
als with complex coefficients in communications was en-
lightened and numerical algorithms for most advanced
computations were presented. Now some particular lin-
ear equations and spectral factorization problems in-
volving complex polynomials and polynomial matrices
of various degree and size will be resolved using the Poly-
nomial Toolbox for MATLAB.

4.1 Diophantine Equations

The Polynomial Toolbox provides nine solvers for vari-
ous kinds of linear (matrix) polynomial equations. We
will concentrate on two in practice most important

types: the symmetric equation A∗X + X∗A = B and
one-sided Diophantine equation AX + BY = C.

First let us create a 3-by-3 polynomial matrix A in
variable ’z’ of degree 4 with complex coefficients using
the Polynomial Toolbox prand command:

>> A = prand(5,5,’z’) + prand(5,5,’z’)*j

Polynomial matrix in z: 5-by-5, degree: 5 A =

Column 1

1.6-0.046i + (0.28-0.3i)z + (1.5+0.42i)z^2 + ...

0.45-2.5i + (1.3-0.19i)z + ...

0.21+0.22i + (-0.082-0.23i)z + ...

1-0.39i + (-0.1-1i)z + (0.22+0.085i)z^2 + ...

0.27-0.24i + (-0.88-0.63i)z + ...

Column 2

-0.43-0.22i + (2-0.69i)z + (-1.1+0.27i)z^2 + ...

0.83+0.88i + (-0.058-0.81i)z + ...

-0.45-0.24i + (0.66+0.25i)z + (0.6+1.1i)z^2 + ...

0.76-0.081i + (-0.001+0.36i)z + ...

0.29+0.72i + (-0.66+0.23i)z + (1.8+0.71i)z^2 + ...

Column 3

-1.5+0.36i + (0.84-1.4i)z + (-2+2.4i)z^2 + ...

2.4+0.77i + (0.17-2.5i)z + (-0.18-1.5i)z^2 + ...

-0.026-1.5i + (0.96+1.6i)z + (-1.4-0.36i)z^2 + ...

0.34-0.85i + (0.066+0.98i)z + ...

-1.9-0.37i + (0.61-0.069i)z + (0.4+1.1i)z^2 + ...

Column 4

-0.011-0.9i + (-1.1-2.1i)z + (0.12+0.77i)z^2 + ...

0.1+1.6i + (0.65+0.38i)z + (-0.026+0.39i)z^2 + ...

0.2+0.19i + (0.41-2.9i)z + (-0.12+0.28i)z^2 + ...

-2.5+0.88i + (-0.29-0.63i)z + (-0.5+1i)z^2 + ...

1.4-1.5i + (0.53+2.3i)z + (0.16+0.15i)z^2 + ...

Column 5

-0.81-0.14i + (0.32-0.98i)z + ...

0.39+1.4i + (-2-1.3i)z + (1.2-0.16i)z^2 + ...

1+0.059i + (1.5+0.67i)z + (-1.1-0.92i)z^2 + ...

-0.68-0.0068i + (0.085+0.37i)z + ...

0.5+1.5i + (0.37+0.74i)z + (0.41-1.2i)z^2 + ...

Similarly, a discrete-time symmetric 3-by-3 matrix B
of degree 8 is created:

>> B = prand(5,5,’z’) + prand(5,5,’z’)*j;

>> B = B*B’;

Solution of related discrete-time symmetric polyno-
mial equation A∗X + X∗A = B can be achieved by
calling the Polynomial Toolbox axxab command:

>> X = axxab(A,B)

Polynomial matrix in z: 5-by-5, degree: 5

X =

Column 1

2.8e+002+0i + ...

The following check proves accuracy of obtained re-
sult:

isequal(A’*X + X’*A, B)

ans =

1



Besides the symmetric equations, also all one-sided
Diophantine equation solvers can be addressed by com-
plex polynomial matrices as well. For inastance, hav-
ing defined complex polynomial matrices A,B,C of de-
gree 5 and size 5-by-5, the solution X, Y of the equation
AX+BY = C is reached easily by the following Polyno-
mial Toolbox command (along with a standard check):

>> A = prand(5,5,’z’) + prand(5,5,’z’)*j;

>> B = prand(5,5,’z’) + prand(5,5,’z’)*j;

>> C = prand(5,5,’z’) + prand(5,5,’z’)*j;

>> [X,Y] = axbyc(A,B, C);

>> isequal(A*X + B*Y, C)

ans =

1

All linear polynomial equation solvers of the Polyno-
mial Toolbox are based on powerful linear constant ma-
trix solvers built into MATLAB. As a result, the Poly-
nomial Toolbox functions for polynomial equations are
not only very accurate as it was shown above, but also
pretty fast. For instance, each of presented examples
did not consume more than 1 second on a PC notebook
with Celeron 500 MHz, 64 MB RAM and MATLAB 6.0.

4.2 Polynomial Spectral Factorization

Scalar complex polynomials are considered first. In this
case, the FFT based algorithm can be highly recom-
mended for its speed and reliability.

A symmetric polynomial of degree 500 to be factored,
positive on the unit circle, is created by the following
commands:

>> p = prand(250,’z’) + j*prand(250,’z’);

>> p = p*p’;

Applying the FFT based routine with 212 Fourier
points the spectral factor is received in a fraction of sec-
ond:

>> tic, f = fftspf(p,2^14); toc;

elapsed_time =

0.2200

Correctness checks follow now. Note that some addi-
tional Polynomial Toolbox functions and operators are
applied to complex polynomials (actually, all operators
and standard functions work for complex polynomials
and polynomial matrices automatically):

>> isstable(f)

ans =

1

>> norm(f*f’-p)/norm(p)

ans =

1.2460e-005

As one can see, both the stability requirement is met
and the equation ff? = p is fulfilled with good accuracy.
Should the residue be too high for a specific application,
there is no problem to take more Fourier points to im-
prove the result:

>> f = fftspf(p,2^17);

>> norm(f*f’-p)/norm(p)

ans =

3.6538e-009

>> f = fftspf(p,2^19);

>> norm(f*f’-p)/norm(p) ans =

0

In the latter case, an exact (up to working precision)
solution was found.

Let us switch to complex polynomial matrices now.
We proceed similarly to the scalar case, starting with
construction of a 5-by-5 symmetric complex matrix of
degree 5:

>> P = prand(5,5,’z’) + j*prand(5,5,’z’);

>> P = P*P’

Polynomial matrix in z: 5-by-5, degree: 10

Column 1

2.4e+001+0i + ...

For the spectral factorization the spf function of the
Polynomial Toolbox is used, implementing the Newton-
Raphson iterative procedure.

>> tic, F = spf(P); toc;

elapsed_time =

9.8300

Standard checks follow:

>> isstable(F)

ans =

1

>> norm(F’*F-P)/norm(P)

ans =

3.6995e-007

Also in this case the solution can be refined. By prescrib-
ing a higher desired accuracy (default is 10−8), a more precise
solutions are found:

>> F = spf(P,1e-10);

>> norm(F’*F-P)/norm(P)

ans =

1.3141e-009

>> F = spf(P,1e-12);

>> norm(F’*F-P)/norm(P)

ans =

0

Although the spectral factorization as a quadratic problem
is much more involving than linear polynomial equations pre-
sented in the previous subsection, we can conclude that the
Polynomial Toolbox succeeded in factoring relatively large
complex polynomials and polynomial matrices at acceptable
computational time.
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6 Conclusion

Performance of polynomial equation and spectral factoriza-
tion solvers included in the Polynomial Toolbox for MAT-
LAB was manifested in this report for complex valued coef-
ficients. Motivation for developing such tools for complex
(matrix) polynomials comes from the field of signals and
communications as it is shown in the report by an exam-
ple of a radio communication channel and its optimization.
In addition to particular numerical examples, the algorithms
used by respective solvers are also described.
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[15] Vostrý Z., New Algorithm for Polynomial Spectral
Factorization with Quadratic Convergence II, Kyber-
netika, 12, pp. 248-259, 1976.
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