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Introduction

The development of nonlinear median-based �lters in recent years has re-
sulted in remarkable results and has highlighted some new promising research av-
enues. On account of its simplicity, edge preservation property and robustness to
impulsive noise, the standard median �lter remains the most popular for image
processing applications. The median �lter, however, is often apt to remove �ne
details in the image, such as thin lines and corners. In recent years, a variety of
median-type �lters (e.g. relaxed median) have been developed to overcome this
drawback.

Despite Robust Statistics { as the fundamental mathematical tool dealing
with deviations from idealized assumptions in statistics { had been initiated in 60's
and subsequently extensively exploited in 80's, particularly by Peter J. Huber and
Frank R. Hampel, it has been sporadically applied e�ectively in image processing
ever since. Although M-�lters have been on several occasions proven useful as signal
smoothers in impulsive noise environments, they have not yet been suÆciently
developed to constitute a powerful alternative for the robust �ltering problem. In
this paper, we have tried to shed some light onto the issue of utilization of M-
estimates in image processing and hopefully �lled some gaps in the mentioned
�eld.

1. Robust Background

The following section is based on theoretical background presented in [4], [2]
and [1].

1.1. De�nition of M-estimator. M-estimators are generalizations of the usual
maximum likelihood estimates. Classically � is the parameter value maximizing the
likelihood function2, i.e. we have in obvious notation

L(�) =

nY
i=1

f(xi;�) = max!;(1.1)

2The value �? of the parameter � satisfying

8� : L(�?) � L(�)

is said to be maximum likelihood estimate of parameter �. The maximum likelihood principle
states that the set of model parameters that maximizes the apparent probability of a set of
observations is the best set possible.



where f(xi;�) stands for the probability density of the distribution of a random
variable X , or equivalently

� lnL(�) = �
nX

i=1

ln f(xi;�) = min!:(1.2)

Any estimate Tn, de�ned by a minimum problem

nX
i=1

�(xi;Tn) = min!;(1.3)

or by an implicit equation

nX
i=1

 (xi;Tn) = 0;(1.4)

where � is an arbitrary function,

 (x; �) =
@�(x; �)

@�
;(1.5)

is called M-estimate, or Maximum Likelihood Estimate.

In other words, the maximum likelihood estimate of � for an assumed un-
derlying family of densities f(x; �) is functional derived from 1.3, thus a solution
of Z

 (x; �) dFn(x) = 0(1.6)

with

 (x; �) =
@ ln f(x; �)

@�
:(1.7)

We are particularly interested in location estimates

nX
i=1

�(xi � Tn) = min!(1.8)

or

nX
i=1

 (xi � Tn) = 0:(1.9)

This last equation can be written equivalently as

nX
i=1

wi � (xi � Tn) = 0(1.10)

with

wi =
 (xi � Tn)

xi � Tn
;(1.11)

this gives a formal representation of Tn as a weighted mean

Tn =

P
wixiP
wi

(1.12)

with weights depending on the sample.

Remark 1.1. If  is not monotone, the situation is much more complicated. For
computational reasons, in order to narrow down the choice of solutions we take the
solution nearest to the sample median: start an iterative root-�nding procedure (eg.
Newton's method) at the sample median and accept whatever root it converges to.
This way, the procedure inherits some favourable properties from the median.
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Figure 1. Sketch of various properties of an inuence function

1.2. Robustness Measures. These measures basically try their best to answer
the question of how greatly a small change in the underlying distribution changes
the distribution of an estimate. Whereas the breakdown point is a global measure
of the maximum fraction �? of arbitrary gross errors that an estimator can handle,
the inuence function measures the e�ect of in�nitesimal perturbations on the
estimator (formal de�nition comprises Gâteaux derivative and a Dirac function)

Let us now look at the important relation between the IF and the asymptotic
variance. Making use of the �rst-order Taylor series expansion, the central limit
theorem and the asymptotic normality, we conclude

V (T; F ) =

Z
IF (x;T; F )2dF (x):(1.13)

When estimating location in the model X = <;� = <; F�(x) = F (x � �) is
seems natural to use  -functions of the type

 (x; �) =  (x� �):(1.14)

Then at the model distribution F we obtain

IF (x; ; F ) =
 (x)R
 0dF

:(1.15)

Hence the asymptotic variance at F can be calculated from (1.13), yielding

V ( ; F ) =

R
 2dF�R
 0dF

�2 :(1.16)

1.3. Other Robustness Measures Derived from the Inuence Function.

� The gross-error sensitivity measures the worst possible inuence on an esti-
mator by an arbitrary in�nitesimal contaminant

? = sup
x
jIF (x;T; F )j:(1.17)

� The local-shift sensitivity has to do with small uctuations in the observations

�� = sup
x6=y

jIF (y;T; F )� IF (x;T; F )j
jy � xj(1.18)

� The rejection point allowing to reject extreme outliers entirely.

�� = inffr > 0; IF (x;T; F ) = 0 when jxj > rg(1.19)

2. Robust Estimators Bank

2.1. Redescending M-estimators.

1. Hampel's three-part redescending M-estimator

2. Andrews' sine wave
3. Tukey's biweight function
4. Minimax hyperbolic tangent estimator



 (x) =

8>><
>>:

x 0 � jxj � a
a sign(x) a � jxj � b

a r�jxjr�b sign(x) b � jxj � r

0 r � jxj

(2.1)
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Figure 2. Hampel's M-estimator

 (x) =

�
sin(x) �� � x � �
0 otherwise

(2.2)
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Figure 3. Andrews' M-estimator

 (x) =

�
x(1� x2)2 jxj � 1
0 otherwise

(2.3)
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Figure 4. Tukey's M-estimator

 (x) =

8<
:

x 0 � x � a
b tanh[ 12b(c� x)] a � x � c
0 x � c

(2.4)
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Figure 5. Minimax M-estimator

The redescending M-estimators have proven very successful in various stud-
ies, especially because they

� possess a � which is rather low,
� possess a low local-shift sensitivity �,
� possess a �nite rejection point ��,
� are much more eÆcient than the median.

2.2. Other M-estimators. The following estimators are also worth looking into
in connection with image �ltering.

� Huber estimator (see �g. 6), which was introduced by Huber as the solution
of the minimax problem at F = �,

� Cauchy �lter is a exible and eÆcient �lter class for non-Gaussian impulsive
environments that can appear in practice. They are de�ned as the MLE of
location at the Cauchy distribution with dispersion , given by

f(x) =


�

1

2 + x2

and thus generating an associated cost function

�(x) = log[2 + x2]:

In case of standard Cauchy distribution with =1, we can state that



 (x) =

�
x jxj < b
b signx jxj � b;

(2.5)
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Figure 6. Huber estimator

 (x) =
2x

(1 + x2)
(2.6)
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Figure 7. Cauchy �lter

3. M-estimates and Image Filtering

3.1. Computational challenge. Unfortunately, location M-estimators are usu-
ally not invariant with respect to scale, which is often a nuisance parameter. Ac-
cording to [4], this problem can be solved by de�ning Tn through

nX
i=1

 

�
xi � Tn
Sn

�
= 0;(3.1)

where Sn is a robust estimator of scale. It is advisable to determine Sn �rst, by
means of the median absolute deviation as an auxiliary scale estimate4

Sn = 1:483 MAD(xi) = 1:483 medifjxi �medj(xj)jg(3.2)

which has maximal breakdown point �� = 50%. On the other hand, one could
also compute Tn and Sn simultaneously as M-estimators of location and scale, as
in Huber's proposal [4]. However, simulation has clearly shown the superiority of
M-estimators with initial scale estimate given by the MAD, which is also much
easier to use than the simultaneous version. Therefore, we recommend the use of
initial MAD scaling for M-estimators, namely the following computational variant.

� Modi�ed Weights

This approach apparently results from applying the plain iteration method
on (1.9). Let

T (0) = medfxig;(3.3)

S(0) = medfjxi � T (0)jg:(3.4)

(3.5)

Perform a few iterations of

T (m+1) =

P
w
(m)
i xiP
w
(m)
i

;(3.6)

with

w
(m)
i =

 
�
(xi � T (m))=S(0)

�
(xi � T (m))=S(0)

:(3.7)

The iteration limit T (1) is unequivocally a solution of

X
 

�
xi � T

S(0)

�
= 0 :(3.8)

4In most cases, it is convenient to standardize the estimates such that they are consistent at
the ideal model distribution. In order to make MAD consistent at the normal distribution, we
must multiply it by �( 3

4
) �= 1:483



3.2. Filtering windows. Several well-known two-dimensional �xed-sized �lter masks
(see �g. 8 and [3]) have been used in selecting image regions for the subsequent �lter
application. The borders of the image were coped with by duplicating the outmost
values as many times as needed. Of the basic �lter masks in Figure 8 the square
mask is the least sensitive to image details. It �lters out narrow lines and cuts
corners of square-shaped objects. In image �ltering the key factor is the trade-o�
between the amount of smoothing and the preservation of details.

It is easy to observe that the cross �lter is able to preserve horizontal and
vertical lines, whereas the X-shaped �lter preserves only diagonal lines. For most
applications the cross �lter is preferred over the X-shaped �lter since horizontal
and vertical details are usually more important for a human observer than diagonal
details.

Two−dimensional filter windows

Figure 8. Filter masks: X-SHAPED, SQUARE, CIRCLE, VER-
TICAL, HORIZONTAL, CROSS

3.3. Preliminary experiments. In the experimental testing phase we processed
a horizontal NMR slice (see Figure 9) conducted on the level of turbinate bone,
outer auditory canal and brain steam. We tested four illustrative �lters using circle
mask with 2 pixels radius : Standard mean and median �lter (to demonstrate the
contrast between linear FIR �lter and nonlinear, Cauchy �lter (whose behavior can
by tuning a simple parameter easily range from highly robust mode-type operation
to the familiar average-type operation of the sample mean) robust �lter) and �nally
Andrews' �lter as a representative of redescending M-estimates.

Eventually, several quantitative measures were evaluated to epitomize both
performance and eÆciency of the �lters, namely

1. Signal to Noise ratio

SNR = 10 � log
P

i;j y
2
ijP

i;j(zij � yij)2

2. Maximum error

MAXE = maxi;j jxij � yij j;

3. Mean absolute error

MAE = meani;j jxij � yij j;

4. Sum squared error

SSE =
X
i;j

(xij � yij)
2;

where (ij) stands for the coordinate location and xij ; yij and zij are intensities
of the original, denoised and corrupted image, respectively.



SNR MAXE MAE SSE
Mean 19.93 0.18 0.09 22.03
Median 23.77 0.09 0.01 1.14
Cauchy 20.23 0.18 0.09 20.88
Andrews 23.34 0.09 0.02 1.09

Table 1. Performance measures

Original NMR image with designated region of interest

Figure 9. Original NMR image

Corrupted NMR image with designated region of interest

Figure 10. Corrupted NMR image
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Figure 11. Image cutouts and cor-
responding histograms
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Figure 12. Filtering results
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Figure 14. 3D view of minimized function

3.4. Demonstration of Numerical aspects. We studied the properties of the
tuning parameter of Cauchy �lter in such a way, that we used randomly selected
pixel and applied horizontal mask with radius r=2. The maximum likelihood equa-
tion X

i

xi � �

2 + (xi � �)2
= 0

was being solved by means of Newton iterative method until desired precision was
attained to. At =0, the minimized function �(X; �) has distinct minima at all the
points included in �lter mask. If  is increased, the number of minima decreases.



e ? �? �?

Huber 0.9563 1.6749 3.6829 1.1889
Tukey 0.9100 1.6749 3.5528 1.4629

Andrews 0.9093 1.6749 3.5509 1.6749
Table 2. Comparison of Single-parameter Filters

3.5. Numerical analysis of single-parameter M-�lters. In this part, we con-
ducted the comparison of some redescending as well as monotone M-estimators. In
order to make them comparable, their tuning constants were set up in such a way
so that all the �lters belong to 	r with r = 4 and their gross-error sensitivities ?

at � must be equal. Therefore, we decided to put ? = 1:6749, which is the value7

for the Tukey's biweight for r = 4. The estimators under study were the following
:

� Andrews' Sine, a=1.142
� Tukey's Biweight, r=4
� Huber's Minimax, b=1.4088

Table 2 lists the asymptotic eÆciencies (reciprocal value of asymptotic vari-
ance) of these estimators at normal model, as well as their gross-error, change-of-
variance and local-shift sensitivities. It turns out that the tree estimators exhibit
similar behavior.

4. Experimental Noising/Denoising

In this key phase, we generated several types of noise coming from vari-
ous distribution families, applied them to the NMR slice showing a brain tumor
and �nally cleared the noise out with our special-design �lter based on hyperbolic
functions.

4.1. Arti�cial Generation of Noise. In the beginning, the tumor close-up was
corrupted with four di�erent noise distributions, three of which being of additive
nature and one multiplicative noise. The additive noises are distinguished by the
following noise densities :

� Gaussian

f(x) =
1

�
p
2�
e�x

2=2�2 ;(4.1)

� Laplacian, as robust alternative to normal distribution

f(x) =
1

�
p
2�
e�

p
2jxj=�(4.2)

� and Cauchy, as yet another model for heavy-tailed noise

f(x) =
1

��
�
1 + x2

�2

�(4.3)

with � as standard deviation for Gaussian and Laplacian noise, and as scale
parameter for Cauchy noise.

4.2. Experimental Filter Design and Motivation. Our special-design, brand-
new �lter having been developed in accordance with robust statistics and vali-
dated in several experiments draws on Hampel's recommendations concerning M-
estimates.

In [2], Hampel summarizes several observations regarding redescending es-
timators. He points out that two-part estimators as well as hyperbolic tangent
estimators descend towards zero too steeply; therefore it seems advisable to inves-
tigate some approximations to combinations of these tanh estimators and two-part

7The value of ? for comparative purposes was suggested by [2].
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Figure 15. Experimental �lter

descending estimators. Thus, we decided to retain the �rst linear part of two-part
descending estimators, and replace the second one with function argument of hy-
perbolic sine, which comes from the family of hyperbolometric functions { inverse
functions to hyperbolic functions. So we took standard argsinh function, expressed
in logarithmic form as

argsinh(x) = sinh�1(x) = ln(x+
p
x2 + 1);(4.4)

and shifted it r�a
2 units along x-axis and a

2 units along y-axis in order to link it to
the �rst part of the estimator at the point [a; a] and annul it at [r; 0]. Therefore,
we multiply argsinh by constant k calculated from the equation

k

�
�argsinh

�
r � a

2

��
= �a

2
;(4.5)

yielding

8x 2 ha; ri : k
�
�argsinh

�
x� r � a

2
� a

��
+
a

2
= k

�
�argsinh

�
x� r + a

2

��
+
a

2
;

(4.6)

as shown on �gure 15. Likewise, we performed analogical operation in the
left half-plane. Thus the �lter is de�ned by

 (x) =

8<
:

x 0 � jxj � a
k
��argsinh(x� r+a

2 )
�
+ a

2 a � jxj � r
0 otherwise

(4.7)

4.3. Testing Procedure. At the beginning of the testing phase we took noisy im-
ages generated in preceding noising procedures and engaged �ltering programmes.
In particular, we employed 2D binomial mask on sarcoma close-up 16 corrupted
with Gaussian noise (Experiment no.1), Cauchy noise (Experiment no.2), Lapla-
cian noise (Experiment no.3) and �nally multiplicative noise (Experiment no.4),
and performed �ltration having used our experimental �lter. Then, we applied
wide spectrum of mask types on Laplacian-corrupted image, namely circle mask
with 2 pixels radius (Experiment no.5), square mask with 1 pixel radius (Exper-
iment no.6), X-shaped mask with 2 pixels radius (Experiment no.7), and eventu-
ally cross mask with 3 pixels radius (Experiment no.8). The resultant images 17
and 18 clearly exhibit rather successful noise elimination, thus justifying the use
of our special-design �lter. Note characteristic patterns in the individual �ltered
images (18, experiments no.4{8) leaking from corresponding mask shapes.

Remark 4.1. Filter parameters a and r were set to a = 15; r = 150 in case of
additive noise, and a = 10; r = 11 in case of multiplicative speckle noise. These
values were assigned heuristically after performing several testing experiments and
visual/quantitative evaluation of the results, taking into account especially SNR.
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Figure 16. Sarcoma

SNR MAXE MAE SSE MSE
Experiment no.1 24.6996 0.20432 0.039655 5.2046 0.0025216
Experiment no.2 16.3416 1.6173 0.053741 12.0105 0.005819
Experiment no.3 24.5328 0.21619 0.039109 5.2923 0.0025641
Experiment no.4 21.8824 1.1188 0.040783 6.9049 0.0033454
Experiment no.5 18.2131 0.34842 0.088493 23.3477 0.011312
Experiment no.6 24.012 0.22229 0.039974 5.5708 0.002699
Experiment no.7 20.2691 0.33154 0.048432 8.0968 0.0039228
Experiment no.8 19.71 0.27087 0.048278 8.5618 0.0041482

Table 3. Performance measures, testing experimental �lter

Remark 4.2. Binomial masks ow from Pascal's triangle, i.e. the binomial expan-
sion coeÆcients. Thus 2D binomial mask of 3�3 dimension is given by

B =

2
4 1 2 1

2 4 2
1 2 1

3
5(4.8)

. Not only did we select binomial masks because of their high reputation in image
�ltering (steming mainly from their isotropic properties providing them with unique
ability to considerably reduce noise environment), but above all to demonstrate
incorporation of weighting framework into mask application.

Filter 1, Gaussian noise Filter 2, Laplacian noise

Filter 3, Cauchy noise Filter 4, multiplic. noise

Figure 17. Filtered images, exper-
iments 1-4

Filter 5, Circle mask Filter 6, Square mask

Filter 7, X mask Filter 8, Cross mask

Figure 18. Filtered images, exper-
iments 5-8

In order to have some quantitative appreciation of �ltering results, we re-
calculated four measures of eÆciency (see subsection 3.3 for de�nitions), added

� Mean squared error

MSE = meani;j jxij � yij j2;

and summarized the results in table 3.



5. Conclusions

Experimental results (primarily signal to noise ratio) clearly demonstrate
�lter's high eÆciency in Cauchy as well as Gaussian environment, whereas the
Laplacian noise was not �ltered out so e�ectively. One of the reasons for such
behaviour lies in appropriate tuning of �lter's parameters.

6. Open Questions and Future Directions

The most auspicious and promising future work should be focused on making
the comparison of the results with linear �lters. In addition, more numerical aspects
(continuity, limits, convergence etc.) of the �lters in connection with their tuning
parameters seem worth undergoing in-depth analysis and discussion. Parameters
a and r of our special-design �lter, as well as shapes and radiuses of the �ltering
windows, have obviously considerable impact on �ltering results and therefore also
deserve further scrutiny, including diligent research of parameter dependence on
miscellaneous quantitative measures.
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