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Abstract

Signal and image transforms represent an eÆcient tool for observed data analysis

and further processing. The paper is devoted to the description of selected prop-

erties of Wavelet transform based upon the application of dilated and translated

time limited functions enabling multiresolution signal analysis.

1 Introduction

Wavelet transform represents a mathematical tool for one-dimensional or multi-dimensional
signal analysis and processing. The paper is devoted to the study of analytical description of
Wavelet functions and their de�nition by solution of dilation equations. Conditions of signal
perfect reconstruction are summarized in this connection to de�ne dilation equation coeÆcients.

The main part of the paper presents algorithms for signal and image decomposition en-
abling the following signal de-noising using selected thresholding methods and similar approach
to one-dimensional and two-dimensional signal processing.

2 Principles of Signal Wavelet Decomposition

Signal Wavelet decomposition using Wavelet transform (WT) provide an alternative to the short-
time Fourier transform (STFT) for signal analysis [2, 1] resulting in signal decomposition into
two-dimensional function of time and scale.

Wavelet functions used for signal analysis are derived from the initial function W (t) form-
ing basis for the set of functions

Wm;k(t) =
1p
a
W (

1

a
(t� b)) =

1p
2m

W (2�mt� k))

for discrete parameters of dilation a = 2m and translation b = k 2m. Wavelet dilation closely
related to its spectrum compression enables local and global signal analysis. An example of an
analytically de�ned Wavelet function is presented in Fig. 1.
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Figure 1: Shanon Wavelet function derived from the initial function de�ned in the form of
relationW (t)=sin(�t=2) cos(3�t=2)=(�t=2) and the e�ect of its dilation to spectrum compression

2.1 De�nition of Wavelet Function

Wavelet functions can be de�ned either in the analytical form or by solution of dilation equations.
In case of Daubechies Wavelet functions [1] with four coeÆcients the initial Wavelet function is
de�ned by solution of equation

W (x) = �c3�(2x) + c2�(2x�1) � c1�(2x�2) + c0�(2x�3)



where �(x) is a Scaling function with the same coeÆcients. These coeÆcients are chosen thor-
oughly in order to generate good Wavelets with special properties. The basic dilatation equation
has a form

�(x) = c0�(2x) + c1�(2x�1) + c2�(2x�2) + c3�(2x�3)

Solution of this dilation equation can be obtained by an iterative algorithm evaluating

�j(x)=c0�j�1(2x) + c1�j�1(2x� 1) + c2�j�1(2x� 2) + c3�j�1(2x� 3)

for j = 1; 2; � � � until �j(x) becomes indistinguishable from �j�1(x). It is possible to start from
a box function �0(x) = 1, 0 < x � 1, �0(x) = 0 elsewhere. Scaling and Wavelet functions must
satisfy some conditions to enable perfect signal reconstruction - conservation of area condition,
accuracy condition and the orthogonality condition. The area under the Scaling function is
conserved if the sum of the coeÆcients is equal to 2 forming relation

c0 + c1 + c2 + c3 = 2

Since a unit area box is used to start the iteration, the area under the Scaling function remains
equal to unity expressed by relation

R
1

�1
�(x) dx = 1: The next condition for the Wavelet

coeÆcients for a faithful representation of the analysing signal is that the Fourier transform
of the Scaling function must be periodically zeros of the highest possible order. That will be
guaranteed by conditions

c0 � c1 + c2 � c3 = 0 and � c1 + 2c2 � 3c3 = 0

The development of the Scaling function �(x) by iteration from a unite box must be reversible.
From this claim we have the condition

c0c2 + c1c3 = 0

Conditions described above have resulted in four equations for four coeÆcients of dilatation
equation with their solution

c1 = (1 +
q
(3))=4 c2 = (3 +

q
(3))=4 c3 = (3�

q
(3))=4 c4 = (1�

q
(3))=4

Five steps of iteration process using algorithm presented in Fig. 2 are illustrated in Fig. 3.

function [S,W]=dw(M)

% Scaling and Wavelet Function Iterative Estimation Using Dilation Equations

global c; d=0.01; x=0:d:3;

c(1)=(1+sqrt(3))/4; c(2)=(3+sqrt(3))/4; c(3)=(3-sqrt(3))/4; c(4)=(1-sqrt(3))/4;

for k=1:M

S=daub(x,k);

W=-c(4)*daub(2*x,k)+c(3)*daub(2*x-1,k)-c(2)*daub(2*x-2,k)+c(1)*daub(2*x-3,k);

figure(1); subplot(M,2,2*k-1); plot(x,S); axis([-inf +inf -2 2]); grid

if k==1, title('SCALING FUNCTION'), end

subplot(M,2,2*k); plot(x,W); axis([-inf +inf -2 2]); grid

if k==1, title('WAVELET FUNCTION'), end

end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

function S=daub(x,j)

% Scaling Function Definition

global c

if j==1

S=x>0 & x<=1;

else

S=c(1)*daub(2*x,j-1)+c(2)*daub(2*x-1,j-1)+...

c(3)*daub(2*x-2,j-1)+c(4)*daub(2*x-3,j-1);

end

Figure 2: Algorithm of iterative solution of dilation equations
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Figure 3: Recurrent solution of dilatation equations

2.2 Wavelet Shape Estimation Using Upsampling

Having a sequence fxngN�1n=0 (Ts = 1) it is possible to de�ne corresponding diluted sequence
fzng2N�1n=0 = fx0 0 x1 0 :::g (Ts = 0:5). After the elimination of fast signal components from di-
luted sequence we obtain a sequence with original values of the sequence fxngN�1n=0 interleaved by
interpolated values replacing inserted zeros. We apply this process to the sequence of Wavelet co-
eÆcients hn = f�c3; c2;�c1; c0g. Multiplication in the frequency domain corresponds to a convo-
lution in the time domain. The convolution of a diluted sequence zn = f�c3; 0; c2; 0; �c1; 0; c0g
and the sequence of the Scaling coeÆcients sk = fc0; c1; c2; c3g forms the next step of the iter-
ative process of signal convolution according to relation sn ? zn =

P
3

k=0 sk xn�k. The algorithm
in Fig. 4 provides functions in Fig. 5.

% Wavelet and Scaling Function Evaluation

delete(get(0,'children'))

% Low-pass Daubechies Wavelet Filter Definition

k=menu('Daubechies Wavelet Coefficients Definition',

'Using Table from Wavelet Toolbox',...

'Evaluation from Definition Equations for L=4');

if k==1, load db2; l=db2*sqrt(2);

else

[l0,l1,l2,l3]=solve('l0+l1+l2+l3=2','l0-l1+l2-l3=0',...

'-l1+2*l2-3*l3=0','l0*l2+l1*l3=0');

lsym=[l0(2),l1(2),l2(2),l3(2)]; l=numeric(lsym)/sqrt(2);

end

% Complementary High-Pass Filter Definition

h=fliplr(l); ll=length(l);for i=1:2:ll, h(i)=-h(i); end

% Daubechies Wavelet Function Shape Evaluation for N=4

% Using Basic Coefficients Upsampling and Convolution

l0=l;

for i=1:10

hh=dyadup(h,2); h=conv(l0,hh); N=length(h); h=sqrt(2)*h;

subplot(2,1,1); plot([1:N]/N,h); title('WAVELET FUNCTION')

end

% Daubechies Scaling Function Shape Evaluation for N=4

% Using Basic Coefficients Upsampling and Convolution

for i=1:10

hh=dyadup(l,2); l=conv(l0,hh); N=length(l); l=sqrt(2)*l;

subplot(2,1,2); plot([1:N]/N,l); title('SCALING FUNCTION')

end

Figure 4: Algorithm for Daubechies coeÆcients evaluation and Wavelet shape evaluation using
upsampling and convolution
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Figure 5: Convolution and Wavelet de�nition

2.3 Signal Wavelet Decomposition

Wavelet transform coeÆcients can be evaluated using Mallat decomposition tree presented in
Fig. 6. This decomposition assumes in each step convolution of a signal with high-pass half-band
�lter (Wavelet function) and complementary low-pass �lter (Scaling function). The high-pass
signal part contains the �nest details while the low-pass signal part contains slowly changing
signal components. Signal downsampling is then applied in each decomposition step.

ÿþýÿþýÿþýÿþý

ÿ�ýýÿ�ýýÿ�ýýÿ�ýý

ÿ�ýÿ�ýÿ�ýÿ�ý

ÿ�ÿ�ÿ�ÿ�

1: DWT

Wavelet Analysis
Level 3

1: DWT

Wavelet Analysis
Level 2

1: DWT

Wavelet Analysis
Level 1

�� ��

�����ý�����������ý�����������ý�����������ý������

�þ����

������

�þ����

������

�����

�����

������

Figure 6: Signal decomposition by Mallat decomposition tree into three levels

An example of simulated signal decomposition is presented in Fig. 7. Discrete Wavelet
transform of a signal s1 into levels L = 3 by Daubechies Wavelet function db2 using command

L=3; [c,l] = wavedec(s1,1,'db2');

provides coeÆcients c that can be ordered in one row vector enabling the following signal de-
noising and reconstruction.
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Figure 7: Simulated signal Wavelet decomposition into three levels presenting corresponding
Wavelet coeÆcients pointing to signal impulse component



3 Image Wavelet Decomposition

Image Wavelet decomposition presented in Fig. 8 uses the same principles as that of signal
decomposition. The only di�erence is in the fact that each column of image matrix is convolved
with high-pass and low-pass �lter followed by downsampling at �rst and then the same process is
applied to image matrix rows. Each step of image decomposition results in four image matrices
of the number of rows and columns reduced to the half of that of the original matrix.
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Figure 8: Image Decomposition

Results of one step image decomposition for a simulated image is presented in Fig. 9.
Discrete Wavelet transform of an image s2 into the level L = 1 by function db2 using command

[c,l]=wavedec2(s2,1,'db2');

provides coeÆcients c that can be ordered in one row vector forming similar vector as that
obtained in the one-dimensional case.
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Figure 9: Simulated image one step Wavelet decomposition

4 Signal and Image De-Noising

Both in the case of one-dimensional and two-dimensional signal decomposition it is possible to
modify resulting coeÆcients c before the following signal reconstruction to eliminate undesirable
signal components. Methods of such a process assume estimation of appropriate threshold limits
studied in various books and papers [3].

In case of soft thresholding it is possible to evaluate new coeÆcients c(k) using original
coeÆcients c(k) for a chosen threshold limit Æ using algorithm presented in Fig. 10 by relation

c(k)=

(
sign c(k) (jc(k) j �Æ) if jc(k) j> Æ
0 if jc(k) j� Æ



function rs=recon4(s,w,level,lambda);

if ~exist('s')

% Input Values Definition

N=256; n=0:N-1; f1=0.02; f2=0.15; % 1. Given signal

s=sin(2*pi*f1*n)+sin(2*pi*f2*n);s(150)=s(150)+0.5;s=s-mean(s);

w='db2'; % 2. Choise of wavelet function

level=4; % 3. Decomposition level

lambda=2; % 4. Threshold coefficient lambda

end

% Signal Decomposition to a Given Level

[c,l]=wavedec(s,level,w);

% Signal Reconstruction at a Given Level

a=wrcoef('a',c,l,w,level); d=wrcoef('d',c,l,w,level);

% Signal Reconstruction

i=find(abs(c)<=lambda); cd(i)=0;

j=find(abs(c)>lambda); cd(j)=sign(c(j)).*(abs(c(j))-lambda); z=waverec(cd,l,w);

% Plots

subplot(5,1,1); plot(s,'r'); grid on; axis tight; v=axis;

title(['GIVEN SIGNAL DECOMPOSTION AT LEVEL ',num2str(level)])

subplot(5,1,2);plot(a);grid on;set(gca,'XtickLabel',[]);axis(v)

subplot(5,1,3);plot(d);grid on;set(gca,'XtickLabel',[]);axis(v)

subplot(5,1,4); if length(c)<=300, bar([c' cd'],'group'),

else, plot([c' cd']); end; grid on

set(gca,'XtickLabel',[]); axis tight; v=axis; ll=length(l);

for i=2:length(l)-1

line([l(i);l(i)],[v(3);v(4)])

end

line([v(1);v(2)],[lambda;lambda]);

line([v(1);v(2)],[-lambda;-lambda])

title('SIGNAL WAVELET COEFFICIENTS')

subplot(5,1,5); plot(z,'r'); grid on; axis tight; v=axis;

title('SIGNAL RECONSTRUCTION')

Figure 10: Algorithm for signal de-noising using Wavelet decomposition and soft thresholding
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